66高中数学选修系列选修《微积分基本定理与定积分计算》教案.pdf
《66高中数学选修系列选修《微积分基本定理与定积分计算》教案.pdf》由会员分享,可在线阅读,更多相关《66高中数学选修系列选修《微积分基本定理与定积分计算》教案.pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、41/24 3 微积分基本定理与定积分计算一、目标预览1.理解并能熟练运用微积分基本定理.2.掌握定积分的常用计算方法.3.了解定积分与不等式的常用证明方法.4.了解定积分相关知识的综合应用.二、概念入门设,baRf,称函数xadttfx)()(),(bax为函数)(xf在,ba上的变上限定积分;类似地可定义变下限定积分:bxdttfx)()(.注i)由)(R积分的性质,)(x的定义有意义.ii)由)(R积分的性质易证,)(baCx.三、主要事实1.微积分基本定理若,baCf,则)()(xfx),(bax,即xaxfdttfdxd)()(,,bax.注i)证明由导数的定义及第一积分中值定理即得
2、.ii)通过微分中值定理微积分基本定理及其等价表述沟通了不定积分与定积分、微分与积分的内在联系.iv)利用微积分基本定理及复合函数微分法可得下述的变限42/24)()()()()()()(xxxxfxxfdttfdxd)()()()(abadxxfagdxxgxfbdxxgbf)()(积分求导公式:若,baCf,)(x、)(x在,dc上 可 微 而 且),(dc、,),(badc,则2.第二积分中值定理1)旁内 Bonnet,1819-1892 法)型第二积分中值定理)若,baRf,而且)(xg是,ba上非负递减相应地递增)函数,则存在,ba使得相应地)2)Werierstrass型第二积分中
3、值定理)若,baRf,)(xg是,ba上的单调函数,则存在,ba使得babadxxfbgdxxfagdxxgxf)()()()()()(.证1)令xadttfxF)()(),(bax,利用g的可积性得iixxiniTbadxxfxgdxxgxf110|1)()(lim)()()()()(lim1110|iiiniTxFxFxg再由)()()(111iiinixFxFxg)()()()()(1111niiinixgbFxgxgxF文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档
4、编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E
5、6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3
6、 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6
7、文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y
8、9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2
9、W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8
10、K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K643/24 及g的单调减小性,可得)()()()(maxminagFdxxgxfagFba再由连续函数的介值性即得.2)当g为单调递减增)时,对)()()(bgxgxh)(xg)(ag应用 1)即得.3.定积分的计算1)牛顿莱布尼兹公式)若,baRf,,baCF而且除有限个点外有)()(xfxF,那么有baaFbFdxxf)()()(.注i)牛顿莱布屁兹公式简称LN公式,它是微积分的核心定理,最初分别由牛顿与莱布尼兹在17 世纪
11、下半叶独立得到,柯西在19 世纪初给出精确叙述与证明,黎曼在19 世纪中叶给予完善,达布在1875 年给出现在这种形式.ii)证明可由)(R积分的定义分点包括例外点)及微分中值定理 作用在F上)可推得.2)定积分换元积分法)如果)(t在,上有连续导数,a)(,b)(,,),(ba,,baCf,那么有badtttfdxxf)()()(注i)定积分换元积分公式由复合函数微分法及LN公式可得,而且,)(baCt可减弱为,R.进一步,定积分换元积分公式中的,baCf可减弱为,baRf,但的条件稍许加强 证明较为复杂),即有以下的命题成立:若,baRf,,:ba是一一映射而且还满足文档编码:CQ3A8A
12、7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1
13、C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10
14、H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A
15、8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6
16、U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J
17、10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ
18、3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K644/24 a)(,b)(,,)(Rt,那么有badtttfdxxf)()()(.ii)定积分换元积分法实际上是不定积分第二换元积分法的直接应用.但使用时有较大差别,在这里换元之后变量不需回代,但积分限要跟着更换在去掉根号的情形下须注意函数的符号).iii)对应于不定积分中的第一换元法
19、即凑微分法),在这里可以不加变动地直接应用,而且积分限也不须作更改即仍然采用原来的积分变量).3)分部积分法)如果u、v具有连续的导数,那么有babaxdvxudxxvxu)()()()(babaxduxvxvxu)()(|)()(.注i)分部积分可由乘积微分法则及LN公式直接证之.ii)分部积分公式可连续使用n次,即利用数学归纳法及分部积分公式可得下面的命题:若u、v具有1n阶连续导数,那么有bandxxvxu)1()()(bannnnxvxuxvxuxvxu|)()()1()()()()()()1()(banndxxvxu)1(1)()()1(),3,2,1(n.4.定积分计算中常用的几个
20、公式1)若,baCf,则babadxxbafdxxf)()(badxxbafxf)()(21.文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ
21、3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9
22、C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F
23、4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:
24、CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 H
25、Y9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP5F4J10H8K6文档编码:CQ3A8A7Y9E6 HY9C6U1C2W3 ZP
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分基本定理与定积分计算 66 高中数学 选修 系列 微积分 基本 定理 积分 计算 教案
限制150内