固体物理基础答案解析吴代鸣.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《固体物理基础答案解析吴代鸣.pdf》由会员分享,可在线阅读,更多相关《固体物理基础答案解析吴代鸣.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.试证理想六方密堆结构中c/a=.证明:如图所示,六方密堆结构的两个晶格常数为a 和c。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为2若晶胞基矢cba,互相垂直,试求晶面族(hkl)的面间距。解:cba,互相垂直,可令kccjbbiaa,晶胞体积abccbav)(倒格子基矢:kcjbiaabcbavbjbiakcabcacvbiakcj babccbvb2)(2)(22)(2)(22)(2)(2321而与(hkl)晶面族垂直的倒格矢222321)()()(2)(2clbkahGkcljbkiahblbkbhG故(hkl)晶面族的面间距222222)()()(1)()()(222
2、clbkahclbkahGd3若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择每个原胞含有几个原子答:通过分析我们知道,原胞可选为简单立方,每个原胞中含有5 个原子。体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。4试求面心立方结构的(111)和(110)面的原子面密度。解:(111)面平均每个(111)面有2213613个原子。(111)面面积222232322)22()2(221aaaaaa所以原子面密度22)111(34232aa(110)面平均每个(110)面有2212414个原子。(110)面面积222aaa所以(
3、110)面原子面密度22)110(222aa5设二维矩形格子的基矢为j aaiaa2,21,试画出第一、二、三、布里渊区。解:倒格子基矢:jbjajajaxxaaaavbkxaiaxiaxaaaavb11323321212212222)(2)(2222)(2所以倒格子也是二维矩形格子。2b方向短一半。最近邻;,22bb次近邻;2,2,2211bbbb再次近邻;,12122121bbbbbbbb再再次近邻;3,322bb做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得:第一布里渊区是一个扁长方形;第二布里渊区是2 块梯形和2块三角形组成;第三布里渊区是2
4、对对角三角和4 个小三角以及2 个等腰梯形组成。6六方密堆结构的原胞基矢为:kcajaiaajai aa32123212321试求倒格子基矢并画出第一布里渊区。文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1
5、R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3
6、文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1
7、R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3
8、文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1
9、R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3
10、文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3解:原胞为简单六方结构。原胞体积:cajijicaijacjiakcjiajiaaaav2232123)3()3(41)3(21)3(21)3(21)3(21)(倒格子基矢:kcaavbjiajiak
11、ccaaavbjiakcjiacaaavb2)(2)3(2)3(21232)(2)3(32)3(21232)(221321322321由此看到,倒格子同原胞一样,只是长度不同,因此倒格子仍是简单六方结构。(注意:倒格子是简单六方,而不是六方密堆)选六边形面心处格点为原点,则最近邻为六个角顶点,各自倒格矢的垂直平分面构成一个六面柱体。次近邻为上下底面中心,其垂直平分面为上下平行平面。再次近邻是上下面六个顶角,其垂直平分面不截上面由最近邻和次近邻垂直平分面构成的六角柱体。所以第一布里渊区是一个六角柱体。比倒格子六方要小。7略8、证明一维NaCl 晶体的马德隆常数为2ln2证明:,则左右两侧对称分布
12、任选一参考离子i最近距离)为晶格常数(正负离子;这里令aaarjij.为其中,异号为;同号;.4131211121那么,有:jja文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T
13、5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R
14、7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T
15、5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R
16、7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T
17、5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R
18、7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3.432)1ln(利用展开式:432xxxxx.41312112ln,得:1令x2ln29、若离子间的排斥势用re来表示,只考虑最近邻离子间的排斥作用,试导出离子晶体结合能的表达式,并讨论参数和应如何决定。解:离子为原点)(以,则
19、设最近邻离子间距离为irarrjij,(最近邻以外)4),(最近邻,4)(0202/ijijijrijrerrreeruij最近邻/)(02142总相互作用能为:rNijjeareNU为最近邻离子数其中)1.(.;42/02ZeZreNUr)2.(.4;得:0由平衡条件:/200200rrreZrerU)3.(.142得:0002rreNU)(结合能0rUEc)4.(.91等离子晶体:对于0220rrrUNrKNaCl)5.(.142181/2300200reZrerK文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V
20、9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编
21、码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V
22、9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编
23、码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V
24、9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编
25、码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V9H4T3 ZH4D9T5F8Y3文档编码:CO4B2Z4L6R7 HJ1R5V
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理 基础 答案 解析 吴代鸣
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内