反比例函数图象上点的坐标特征-北京习题集-教师版.pdf
《反比例函数图象上点的坐标特征-北京习题集-教师版.pdf》由会员分享,可在线阅读,更多相关《反比例函数图象上点的坐标特征-北京习题集-教师版.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第1页(共17页)反比例函数图象上点的坐标特征(北京习题集)(教师版)一选择题(共 3 小题)1(2019 秋东城区期末)在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,6),将线段AB绕点B逆时针旋转90后得到线段AB若反比例函数kyx的图象恰好经过A点,则k的值是()A9 B12 C15 D24 2(2019 秋通州区期末)在平面直角坐标系xOy中,点(,)A a b在双曲线2yx上,点A关于y轴的对称点B在双曲线kyx上,则2k 的值为()A4 B0 C2 D4 3(2018 秋大兴区期末)若点(,)A a b在双曲线5yx上,则代数式24ab 的值为()A1 B1
2、 C6 D9 二填空题(共 7 小题)4(2020丰台区模拟)设1(A x,1)y,2(B x,2)y是反比例函数2yx 图象上的两点,若120 xx,则1y与2y之间的关系是 5(2019 秋东城区期末)在平面直角坐标系xOy中,若点1(1,)Ay,2(2,)By,3(3,)Cy在反比例函数(0)kykx的图象上,则1y,2y,3y的大小关系是 6(2019 秋大兴区期末)如图,在平面直角坐标系xOy中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数1(0)yxx,4(0)yxx的图象上,则tanABO的值为 7(2020海淀区校级模拟)已知点(,)A l m,(2,)Bn在反
3、比例函数2yx的图象上,则m与n的大小关系为 8(2019 秋大兴区期末)已知点1(A a,1)b与点2(B a,2)b,两点都在反比例函数5yx的图象上,且120aa,那么1b 2b 9(2020 春海淀区校级月考)在平面直角坐标系中,点(,)A a b在双曲线2yx 上,点A关于y轴的对称点B在双曲线kyx上,则2k 的值为 10(2020 春海淀区校级月考)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(5,0),第2页(共17页)4sin5COA若反比例函数(0)kykx经过点C,则k的值等于 三解答题(共 5 小题)11(2019 秋石景山区期末)在平面直角坐标系xOy
4、中,函数(0)myxx的图象G经过点(3,2)A,直线:1(0)l ykxk与y轴交于点B,与图象G交于点C(1)求m的值;(2)横、纵坐标都是整数的点叫做整点记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W 当直线l过点(2,0)时,直接写出区域W内的整点个数;若区域W内的整点不少于 4 个,结合函数图象,求k的取值范围 12(2019 秋北京期末)如图,在平面直角坐标系xOy中,函数(0)kyxx的图象经过点(1,6)A (1)求k的值;(2)已知点(P a,2)(0)a a,过点P作平行于x轴的直线,交直线22yx 于点M,交函数(0)kyxx的图象于点N 当1a
5、时,求线段PM和PN的长;若2PNPM,结合函数的图象,直接写出a的取值范围 13(2020朝阳区校级模拟)点A是反比例函数1(0)yxx的图象1l上一点,直线/ABx轴,交反比例函数3(0)yxx的图象2l于点B,直线/ACy轴,交2l于点C,直线/CDx轴,交1l于点D(1)若点(1,1)A,求线段AB和CD的长度;文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10
6、K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 H
7、N2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2
8、J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7
9、ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z
10、1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文
11、档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL
12、6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1 第3页(共17页)(2)对于任意的点(,)A a b,判断线段AB和CD的大小关系,并证明 14(2019石景山区一模)如图,在平面直角坐标系xOy中,函数(0)kyxx的图象经过点(1,6)A,直线2ymx与x轴交于点(1,0)B (1)求k,m的值;(2)过第二象限的点(,2)P nn作平行于x轴的直线,交直线2ymx于点C,交函数(0)kyxx的图象于点D 当1n 时,判断线段PD与PC的数量关系,并说明理由;若2PDPC,结合函数的
13、图象,直接写出n的取值范围 15(2019顺义区一模)有这样一个问题:探究函数12yxx的图象与性质 小亮根据学习函数的经验,对函数12yxx的图象与性质进行了探究 下面是小亮的探究过程,请补充完整:(1)函数12yxx中自变量x的取值范围是 ;(2)下表是y与x的几组对应值 x 2 1 0 1 32 74 94 52 3 4 5 6 y 94 43 12 0 12 94 254 92 m 92 163 254 求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z
14、1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文
15、档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL
16、6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10
17、K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 H
18、N2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2
19、J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7
20、ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1 第4页(共17页)(4)根据画出的函数图象,发现下列特征:该函数的图象是中心对称图形,对称中心的坐标是 ;该函数的图象与过点(2,0)且平行于y轴的直线越来越靠近而永不相交,该函数的图象还与直线 越来越靠近而永不相交 文档编码:CL6V1D
21、10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5
22、 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8
23、G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y
24、7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M
25、4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D1文档编码:CL6V1D10K1I5 HN2U8G2J10Y7 ZF4M4Z1M8D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 图象 坐标 特征 北京 习题集 教师版
限制150内