2021年高中数学必修五知识点公式总结.pdf
《2021年高中数学必修五知识点公式总结.pdf》由会员分享,可在线阅读,更多相关《2021年高中数学必修五知识点公式总结.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-.-.word.zl.必修五数学公式概念第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sinsinsinabcABC.正弦定理推论:2sinsinsinabcRABCR为三角形外接圆的半径2 sin,2sin,2sinaRA bRBcRCsinsinsin,sinsinsinaAbBaAbBcCcC:sin:sin:sina b cABCsinsinsinsinsinsinabcabcABCABC2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。任何一个三角形都有六个元素:三条边),(c
2、ba和三个内角),(CBA.在三角形中,三角形的几个元素求其他元素的过程叫做解三角形。3、正弦定理确定三角形解的情况图形关系式解 的 个 数A为锐角sinabAab一 解sinbAab两 解sinabA无 解A为钝角或直角ba一 解ba无 解|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 1 页,共 9 页-.-.word.zl.4、任意三角形面积公式为:2111sinsinsin2224()()()()2sinsinsin2ABCabcSbcAacBabCRrp papbpcabcRABC1.1.2 余弦定理5、余弦定理:三角形中任何一边的平方
3、等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222cosabcbcA,2222cosbaccaB,2222coscababC.余弦定理推论:222cos2bcaAbc,222cos2acbBac,222cos2abcCab6、不常用的三角函数值1575105165sin426426426426cos426426426426tan323232321.2 应用举例1、方位角:如图1,从正北方向顺时针转到目标方向线的水平角。2、方向角:如图2,从指定线到目标方向线所成的小于90的水平角。指定方向线是指正北或正南或正西或正东3、仰角和俯角:如图3,与目标线在同一铅垂平面内的水平视
4、线和目标视线的夹角,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角。1方位角2方向角3仰角和俯角 4视角4、视角:如图4,观察物体的两端,视线张开的角度称为视角。5、铅直平行:于海平面垂直的平面。6、坡角与坡比:如图5,坡面与水平面所成的夹角叫坡角,坡面的铅直|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 2 页,共 9 页文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8
5、HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M
6、9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3
7、ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A
8、3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文
9、档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX
10、10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3
11、D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3-.-.word.zl.高度与水平宽度的比叫坡比hil.5坡角与坡比第二章数 列2.1 数列的概念与简单表示法1、数列的定义:按照一定顺序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。数列中的每一项和它的序号有关,排在第一位的数称为这个数列的第1 项 也叫首项,排在第二位的数称为这个数列的第2 项,排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写
12、成1a,2a,3a,na,简记为na.2、数列的通项公式:如果数列na的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。3、数列的递推公式:如果数列的第1 项或前几项,且从第 2 项或某一项开场的任一项na与它的前一项1na或前几项 2n间的关系可以用一个公式表示,那么这个公式叫做这个数列的递推公式。定义式为121nnaa1n4、数列与函数:数列可以看成以正整数集*N或它的有限子集1,2,3,4,n,为定义域的函数nfan,当自变量按照从大到小的顺序依次取值时,所对应的一列函数值。通项公式可以看成函数的解析式。5、数列的单调性:假设数列na满足:对一切正整数n
13、,都有1nnaa或1nnaa,那么称数列na为递增数列或递减数列。判断方法:转化为函数,借助函数的单调性,求数列的单调性;作差比拟法,即作差比拟1na与na的大小;2.2 等差数列1、等差数列的定义:一般地,如果一个数列从第2 项起,每一项与它的前一项的差等于同一个 常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。定义式为daann12n,n*N或daann 1n*N2、等差中项:由三个数a,A,b组成的等差数列可以看成最简单的等差数列。这时,A叫做a与b的等差中项。A是a,b的等差中项2baAbaA2AbaA.|精.|品.|可.|编.|辑.|学.|习.|资.
14、|料.*|*|*|*|欢.|迎.|下.|载.第 3 页,共 9 页文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D1
15、0R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM
16、1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O
17、1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT
18、3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L
19、5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编
20、码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3-.-.word.zl.3、等差中项判定等差数列:任取相邻的三项1na,na,1nann,2*N,那么
21、1na,na,1na成等差数列112nnnaaa2nna是等差数列。4、等差数列的通项公式11naand,其中1a为首项,d为公差。变形为:11naadn.5、通项公式的变形:dmnaamn,其中ma为第m项。变形为mnaadmn.6、等差数列的性质:1 假设n,m,p,q*N,且qpnm,那么qpnmaaaa;2假设pnm2,那么pnmaaa2;(3)假设m,p,n成等差数列,那么ma,pa,na成等差关系;(4)假设na成等差数列qpnan公差为p,首项为qp;(5)假设nc成等差数列,那么na也成等差数列;(6)如果nanb都是等差数列,那么qpan,mnqbpa也是等差数列。2.3 等
22、差数列的前n项和1、一般数列na与ns的关系为2111nSSnSannn.2、等差数列前n项和的公式:dnnnaaanSnn212113、等差数列前n项和公式的函数特征:1由ndanddnnnaSn2221121,令2dA,21daB,那么na为等差数列nnBAnS2BA、为常数,其中Ad2,baa1.假设0A,即0d,那么nS是关于n的无常数项的二次函数。假设0A,即0d,那么1naSn.2假设na为等差数列,nSn也是等差数列,公差为2d3假设na为等差数列,,232,kkKkkSSSSS也成等差数列4假设mSn,nSm,那么nmSnm5假设nmSS,那么0nmS|精.|品.|可.|编.|
23、辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 4 页,共 9 页文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码
24、:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X
25、7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10R8 HM1H2M9O1Y3 ZT3G1A3L5T3文档编码:CX10X7K3D10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 必修 知识点 公式 总结
限制150内