2022年2019届高考数学考前归纳总结复习题19 .pdf
《2022年2019届高考数学考前归纳总结复习题19 .pdf》由会员分享,可在线阅读,更多相关《2022年2019届高考数学考前归纳总结复习题19 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导数中的求参数取值范围问题一、常见基本题型:(1)已知函数单调性,求参数的取值范围,如已知函数()f x增区间,则在此区间上导函数()0fx,如已知函数()f x减区间,则在此区间上导函数()0fx。(2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。例 1.已知aR,函数2()()exf xxax.(xR,e 为自然对数的底数)(1)若函数()(1,1)f x 在内单调递减,求a 的取值范围;(2)函数()f x是否为 R上的单调函数,若是,求出 a 的取值范围;若不是,请说明理由.解:(1)2-()()exf xxax-2-()(2)e()(e)xxfxxaxax=2-
2、(2)exxaxa.()f x要使在-1,1上 单 调 递 减,则()0fx对(1,1)x都成立,2(2)0 xaxa对(1,1)x都成立.令2()(2)g xxaxa,则(1)0,(1)0.gg1(2)01(2)0aaaa,32a.(2)若函数()f x在 R上单调递减,则()0fx对xR 都成立即2-(2)e0 xxaxa对xR都成立.2e0,(2)0 xxaxa对xR都成立令2()(2)g xxaxa,图象开口向上不可能对xR都成立若函数()f x在 R上单调递减,则()0fx对xR 都成立,即2-(2)e0 xxaxa对xR都成立,e0,x2(2)0 xaxa对xR都成立.22(2)4
3、40aaa故函数()f x不可能在 R上单调递增.综上可知,函数()f x不可能是 R上的单调函数例 2:已知函数ln3fxaxaxaR,若函数()yf x的图像在点(2,(2)f处 的 切 线 的 倾 斜 角 为45,对 于 任 意 1,2t,函 数32/()2mgxxxfx在区间(,3)t上总不是单调函数,求m的取值范围;解:/(2)1,22afa由32/2()2ln23()(2)2,()3(4)22fxxxmg xxxxgxxmx令/()0gx得,2(4)240m故/()0gx两个根一正一负,即有且只有一个正根函数32/()2mg xxxfx在区间(,3)t上总不是单调函数/()0gx在
4、(,3)t上有且只有实数根/(0)20,()0,(3)0gg tg237,(4)233mmtt故243mtt,而23ytt在t1,2单 调 减,9m,综 合 得3793m例 3.已知函数14341ln)(xxxxf()求函数)(xf的单调区间;()设42)(2bxxxg,若对任意)2,0(1x,2,12x,不等式)()(21xgxf恒成立,求实数b的取值范围文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I
5、7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5
6、C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6
7、C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I
8、6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4
9、O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10
10、G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A
11、7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1解:(I)14341ln)(xxxxf的定义域是(0,)22243443411)(xxxxxxf由0 x及0)(xf得31x;由0 x及0)(xf得310 xx或,故函数)(xf的单调递增区间是)3,1(;单调递减区间是),3(,)1,0((II)若对任意)2,0(1x,2,12x,不等式)()(21xgxf恒成立,问题等价于maxmin)()(xgxf,由(I)可知,在(0,2)上,1x是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min1()(1)2f xf;2()24,1,2g
12、 xxbxx当1b时,max()(1)25g xgb;当12b时,2max()()4g xg bb;当2b时,max()(2)48g xgb;问题等价于11252bb或212142bb或21482bb解得1b或1412b或b即142b,所以实数b的取值范围是14,2。例 4设函数22()ln,()f xxmx h xxxa,(1)当a0 时,f(x)h(x)在(1,)上恒成立,求实数m的取值范围;文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 H
13、L10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 Z
14、X8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编
15、码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5
16、 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2
17、 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文
18、档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6
19、J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1(2)当m2 时,若函数k(x)f(x)h(x)在1,3 上恰有两个不同零点,求实数a的取值范围解:(1)由a0,f(x)h(x),可得mlnxx,x(1,),即mxlnx.记(x)xlnx,则f(x)h(x)在(1,)上恒成立等价于m(x)min.求得(x)lnx1ln2x当x(1,e),(x)0;当x(e,)时,(x)0.故(x)在xe 处取得极小值,也是最小值,即(x)min(e)e,故me.(2)函数k(x)f(x)h(x)在1,3 上恰有两个不同的零
20、点等价于方程x2lnxa,在1,3 上恰有两个相异实根令g(x)x2ln,则g(x)12x.当x1,2)时,g(x)0;当x(2,3 时,g(x)0.g(x)在(1,2)上是单调递减函数,在(2,3 上是单调递增函数故g(x)ming(2)22ln2.又g(1)1,g(3)32ln3,g(1)g(3),只需g(2)ag(3)故a的取值范围是(2ln2,3 2ln3.文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A
21、7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:C
22、V4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL
23、10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX
24、8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码:CV4O5C7F6J5 HL10G6C8R6L2 ZX8A7I6I7J1文档编码
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年2019届高考数学考前归纳总结复习题19 2022 2019 高考 数学 考前 归纳 总结 复习题 19
限制150内