大学文科数学第三章教案.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《大学文科数学第三章教案.pdf》由会员分享,可在线阅读,更多相关《大学文科数学第三章教案.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、文艺复兴的火炬驱散了欧洲中世纪的漫漫黑暗,15 世纪之后的欧洲,资本主义逐渐,出现的大量实际问题,给数学提出了前所未有的亟待解决的新课题,其中三类问题导致了微分学的产生:(1)求变速运动的瞬时速度(2)求曲线上一点的切线(3)求极大值和极小值1.1 抽象导数概念的两个现实原型原型 I 求变速直线运动的速度设一质点 M 从点 O开始做变速直线运动,经过T 秒到达 P 点,求该质点在00,tT 时刻的瞬时速度.以 O为原点,沿质点运动的方向建立数轴-s轴,用s表示质点的运动的路程,显然路程s是时间 t 的函数,记作(),0,sf ttT,现求00,tT时刻的瞬时速度00()vv t.如果质点做匀速
2、直线运动,那么按照公式=路程速度时间,便可以求出0v,但是现在要求质点做变速直线运动的速度,则在整个时间间隔0,T 内不能应用上边的公式求0t时刻的速度0v,下面我们分三步来解决这一问题.(1)给0t一个增量t,时间从0t变到10ttt,质点 M 从点0M运动到点1M,路程有了增量1000sf tf tf ttft(2)当t 很小时,速度来不及有较大的变化,可以把质点在t间隔内的运动看似匀速运动,这实质上是把变速运动近似的转化为匀速运动,下面求t内的平均速度00fttftsvtt(3)当t 越来越小,平均速度就越来越接近于0t时刻的瞬时速度0v,即000000limlimlimtttfttf
3、tsvvtt原型 II 求曲线切线的斜率在初等数学中,我们知道曲线)(xfy上的两点000(,)Mxy和,Mx y 的连线为曲线的割线,当点 M 沿着曲线无限的趋近于0M时,其极限位置就是曲线在点0M处的切线,如何求曲线在0M处的切线的斜率呢?我们分三步来解决:(1)求增量给0 x一个增量x,自变量由0 x变到xx0,曲线上纵坐标的相应增量为y=00()()f xxf x.(2)求增量比曲线)(xfy上的点从000(,)Mxy变到00,Mxx yy 时,当x 很小时,此时曲线上的纵坐标来不及有很大的变化,这时候割线的斜率近似的等于切线的斜率,此时割线0M M的斜率为xxfxxfxy)()(00
4、(3)取极限 当0 x时,点00,Mxx yy 沿着曲线无限的接近000(,)Mxy,割线0M M的斜率的极限就是切线的斜率,即0000()()tanlimlimxxf xxf xyxx其中2,是切线与x轴正向之间的夹角.1.2 导数概念定义 设函数xfy在点0 x的某邻域内有定义,当自变量x有一个增量x 时,相应函数值的增量为y=00()()f xxf x,若极限000limxfxxfxx存在,则称函数f在点0 x可导,并称该极限为函数f在点0 x处的导数,记为0 xf,0 xxy,0 xxdxdy,0 xxdxdf等.若上述极限不存在,则称f在点0 x不可导.导数是函数增量y与自变量增量x
5、 之比xy的极限,这个增量比称为函数关于自变量的平均变化率,而导数0 xf=000limxxxfxfxx是函数在点0 x处的变化速度,称为函数f在点0 x处的瞬时变化率.导数的力学意义就是变速直线运动物体的瞬时速度导数的几何意义就是曲线的切线斜率文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H
6、5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3
7、Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI
8、4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B
9、3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG
10、3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B
11、9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编
12、码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5例 1 求函数2()f xx在点2x处的导数解:给2x一个增量x,0(2)(2)(2)limxfxffx20(2)4limxxx20444limxxxx4如果函数f在区间(,)a b内每一点都可导,则称f为区间(,)a b上的可导函数。此时对每一个(,)xa b,都有f的一个导数xf与之对应,记作xf,y,dxdy,dxdf等.即xxfxxfxfx0lim这就是说:函数xf在点0 x的导数0 xf是曲线xfy在点0 x处的函数值例 2 求函数1yx在点1x处的导数解:0()()()limxf xxf xfxx011l
13、imxxxxx01limxx xx21x(1)1f例 3 求函数x的导数解:0()()()limxf xxf xfxx0limxxxxx0limxxxxxx12x综上面的例题,幂函数x的导数1xx例 4 求常数函数Cy的导数.解:(1)求增量:因为Cy,即不论x取什么值,y的值总等于C,所以0y;文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G
14、9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7
15、ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T
16、6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文
17、档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH
18、7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10
19、Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10
20、HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5(2)算比值:xy0;(3)取极限:00limlim00 xxxyy.即常数函数的导数等于零.例 5 求函数xysin的导数.解(1)求增量:xxxxfxxfysin)sin()()(,由和差化积公式有:2)(sin2)(cos2xxxxxxy(2)算比值:22sin)2cos(2sin)2cos(2xxxxxxxxxy.(3)取极限:22sin)2cos(limlimdd00 xxxxxyxyxx00sin2lim cos()limcos22xxxxxxx即(si
21、n)cosxx,用类似的方法,可求得(cos)sinxx我们同样可以利用导数定义去证明对数函数exxaalog1log,特别地xx1ln1.5 函数的可导性与连续性之间的关系定理 2 若函数xf在x处可导,则函数xf在x处连续.1.6 高阶导数的概念函数xf的变化率是用它的导数()fx来表示的,而导数()fx也是x的函数,那么函数()fx的变化率也应该用它的导数()fx来表示,我们把它称为函数xf的二阶导数,记作xf,22d ydx文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9
22、R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码
23、:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5
24、Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z
25、10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4X4G9B3Z7 ZG3K7T6B9R5文档编码:CH7H5Y10Z3Z10 HI4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 文科 数学 第三 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内