复合函数的概念及复合函数的单调性.pdf
《复合函数的概念及复合函数的单调性.pdf》由会员分享,可在线阅读,更多相关《复合函数的概念及复合函数的单调性.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复合函数的概念及复合函数的单调性一、知识点内容和要求:理解复合函数的概念,会求复合函数的单调区间二、教学过程设计(一)复习函数的单调性引例:函数y=f(x)在上单调递减,则函数(a0,且 a1)增减性如何?(二)新课1、复合函数的概念如果 y 是 a 的函数,a 又是 x 的函数,即y=f(a),a=g(x),那么y 关于 x 的函数 y=fg(x)叫做函数y=f(x)和 a=g(x)的复合函数,其中a 是中间变量,自变量为x,函数值y。例如:函数是由复合而成立。函数是由复合而成立,a 是中间变量。2、复合函数单调性由引例:对任意a,都有意义(a0 且 a1)且。对任意,当 a1 时,单调递增
2、,当0a1 时,单调递减。当 a1 时,y=f(u)是上的递减函数是单调递减函数类似地,当 0a1 时,是单调递增函数一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间 N上有意义,且当XM 时,uN。有以下四种情况:(1)若 u=g(x)在 M上是增函数,y=f(u)在 N上是增函数,则y=fg(x)在 M上也是增函数;(2)若 u=g(x)在 M上是增函数,y=f(u)在 N上是减函数,则y=fg(x)在 M上也是减函数;(3)若 u=g(x)在 M上是减函数,y=f(u)在 N上是增函数,则y=fg(x)在 M上也是减函数;(4)若 u=g(x)在 M上是减函数,y
3、=f(u)在 N上是减函数,则y=fg(x)在 M上也是增函数。即:同增异减。注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。例 1、讨论函数的单调性(1)(2)解:又是减函数函数的增区间是(-,2,减区间是 2,+)。x(-1,3)令x(-1,1 上,u 是递增的,x1,3)上,u 是递减的。是增函数函数在(-1,1 上单调递增,在(1,3)上单调递减。注意:要求定义域练习:求下列函数的单调区间。1、(1)减区间,增区间;(2)增区间(-,-3),减区间(1,+);(3)减区间,增区间;文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文
4、档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3
5、Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V
6、2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L
7、6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6
8、L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K
9、7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M
10、8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6(4)减区间,增函数。2、已知求 g(x)的单调区间。提示:设,则 g(x)=f(u)利用复合函数单调性解决:g(x)的单调递增区间分别为(-,-1,0,1,单调递减区间分别为-1,0,1,+)。例 2、y=f(x),且 lglgy=lg3x+lg(3-x)(1)y=f(x)的表达式及定义域;(2)求 y=f(x)的值域;(3)讨论 y=f(x)
11、的单调性,并求其在单调区间上相应的反函数。答案:(1)x(0,3)(2)(0,(3)y=f(x)在上单调递增函数,在上是单调递减函数当 x时,;当 x时,。例 3、确定函数的单调区间。提示,先求定义域:(-,0),(0,+),再由奇函数,先考虑(0,+)上单调性,并分情况讨论。函数的递增区间分别为(-,-1,0,+)函数的递减区间分别为-1,0),(0,1。文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M
12、8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8R6L3Z7 HB3R8E6K7V2 ZI5U1V10M8L6文档编码:CB4P8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合 函数 概念 调性
限制150内