反比例函数经典题型.pdf
《反比例函数经典题型.pdf》由会员分享,可在线阅读,更多相关《反比例函数经典题型.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、反比例函数一、经典内容解析1.反比例函数的概念(1)(k 0)可以写成(k 0)的形式,注意自变量x 的指数为-1,在解决有关自变量指数问题时应特别注意系数k0 这一限制条件;(2)(k0)也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(3)反比例函数的自变量x0,故函数图象与x 轴、y 轴无交点.解析式xky(k为常数,且0k)自变量取值范围0 x的实数图象图象的性质双曲线0k0k示意图位置两个分支分别位于一、三象限两个分支分别位于二、四象限变化趋势在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大对称性是轴对称图形,直线xy
2、是它的两条对称轴是中心对称图形,对称中心为坐标原点3.反比例函数的性质(与正比例函数对比)函数解析式正比例函数 y=kx(k0)反比例函数 (k 0)自变量的取值范围全体实数x0图 象直线,经过原点双曲线,与坐标轴没有交点图象位置 (性 质)当 k0 时,图象经过一、三象限;当k0 时,图象经过二、四象限.当 k0 时,图象的两支分别位于一、三象限;当 k0 时,图象的两支分别位于二、四象限.性 质(1)当 k 0时,y 随 x 的增大而增大;(1)当 k0 时,在每个象限内y 随 x当 k0 时,y 随 x 的增大而减小.(2)越大,图象越靠近y 轴.的增大而减小;当 k0 时,在每个象限内
3、 y 随 x 的增大而增大.(2)越大,图象的弯曲度越小,曲线越平直.注:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)正比例函数与反比例函数,当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.4.反比例函数中比例系数k 的几何意义(1)过双曲线(k 0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为.(2)过双曲线(k 0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为二、典型例题分析1.反比例函数定义【例 1】如果函数222kkkxy的图像是双曲线,且在
4、第二,四象限内,那么k 的值是多少?1.反比例函数xy2的图像位于()A第一、二象限 B 第一、三象限 C 第二、三象限 D 第二、四象限2.若双曲线 y6x经过点 A(m,2m),则 m的值为()A.3 B.3 C.3 D.33.已知某反比例函数的图象经过点(m,n),则它一定也经过点()A.(m,n)B.(n,m)C.(m,n)D.(m,n)4(2007陕西)在ABC的三个顶点(23)(45)(3 2)ABC,中,可能在反比例函数(0)kykx的图象上的点是5.若点 P(4,m)关于 y 轴对称的点在反比例函y=(x0)的图象上,则m的值是文档编码:CR7L7V9A2Q8 HD1L3M8K
5、9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8
6、S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7
7、V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M
8、8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3
9、C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7
10、L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L
11、3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S102.反比例函数的表示【例 2】已知21yyy,xy 与1成正比例,22xy 与成反比例,且间的函数解析式与,求的值都是时,时和xyyxx19321.若 y 与x成反比例,x与z成正比例,则 y 是z的()A、正比例函数 B、反比例函数 C、一次函数D、不能确定2已知y与)2(x成反比例关系,且当1x时,4y,则y
12、关于x的函数解析式为3 已知y1与x成正比例(比例系数为k1),y2与x成反比例(比例系数为k2),若函数12yyy的图象经过点(1,2),(2,21),则1285kk3.反比例函数的增减性问题.【例 3】在反比例函数xy1的图像上有三点1x,1y,2x,2y,3x,3y。若3210 xxx则下列各式正确的是()A213yyy B 123yyy C 321yyy D 231yyy1在反比例函数图象上有两点A(,),B(),当时,有,则m的取值范围是().Am 0 Bm 0 Cm Dm 2:已知反比例函数的图象上两点A(,),B(,),当时,有,则 m的取值范围是_.3:若反比例函数上,有三点A
13、(,),B(,),C(,),且,则,的大小关系是_.4.设有反比例函数 ykx1,(,)xy11、(,)xy22为其图象上的两点,若xx120时,yy12,则 k 的取值范围是 _4.反比例函数与图象的面积问题.(1)求函数解析式1如图,P是反比例函数图象在第二象限上的一点,且矩形 PEOF的面积为3.求这个反函数的解析式.2.(2007山东枣庄)反比例函数xky的图象如图所示,点M是该函数图象上一点,MN 垂直于 x 轴,垂足是点 N,如果 SMON2,则 k 的值为()(A)2 (B)-2 (C)4 (D)-4文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S1
14、0文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9
15、A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K
16、9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8
17、S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7
18、V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M
19、8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3
20、C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10CBA(第 2 题图)yxO(2)求图形面积的问题1.图中正比例函数和反比例函数的图象相交于A、B两点,分别以 A、B两点为圆心,画与 y 轴相切的两个圆,若点 A 的坐标为(1,2),求图中两个阴影面积的和.(3)求特殊点组成图形的面积1如图,反比例函数y=与一次函数y=-x+2 的图象相交于A、B两点.(1)求 A、B两点的坐标;(2)求
21、 AOB的面积.5.k 的几何意义及应用1点P为反比例函数图象上一点,如图,若阴影部分的面积是12 个(平方单位),则解析式为2如图,反比例函数xy5的图象与直线)0(kkxy相交于A、B两点,ACy轴,BCx轴,则ABC的面积等于个面积单位.3如图,已知双曲线xky(x0)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k_。6.反比例函数和一次函数的综合例 1函数 y=与 y=mx-m(m0)在同一平面直角坐标系中的图象可能是()1.已知反比例函数 ykx(k0),当 x0 时,y 随 x 的增大而增大,那么一次函数 ykxk 的图象经过()A.第一、二、三象限
22、B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限ABCEOFxy(第 3 题图)文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7
23、L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L
24、3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9
25、E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:CR7L7V9A2Q8 HD1L3M8K9Y6 ZH5D9E3C8S10文档编码:C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 经典 题型
限制150内