2021年正弦定理和余弦定理.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021年正弦定理和余弦定理.pdf》由会员分享,可在线阅读,更多相关《2021年正弦定理和余弦定理.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 第三章三角函数、三角恒等变换及解三角形第7 课时正弦定理和余弦定理1.(必修 5P10习题 1.1 第 1(2)题改编)在ABC中,若A 60,B45,BC 32,则 AC _答案:23 解析:在 ABC中,ACsinBBCsinA,AC BC2 sinBsinA323223223.2.(必修 5P24复习题第1(2)题改编)在ABC中,a3,b 1,c2,则 A _答案:60解析:由余弦定理,得cosAb2c2a22bc1 432313212,0 A,A 60.3.(必修 5P17习题 1.2 第 6 题改编)在ABC中,a、b、c 分别为角A、B、C所对的边,若 a2bcosC,则此三
2、角形一定是_三角形答案:等腰解析:因为a2bcosC,所以由余弦定理得a2b2a2b2c22ab,整理得b2c2,故此三角形一定是等腰三角形4.(必修 5P17习题 6 改编)已知 ABC的三边长分别为a、b、c,且 a2b2c2ab,则C _答案:60解析:cosCa2b2 c22abab2ab12.0 C180,C 60.5.(必修 5P11习题 1.1 第 6(1)题改编)在ABC中,a32,b23,cosC13,则ABC的面积为 _答案:43 解析:cosC13,sinC 223,SABC12absinC 123 323 233223 43.1.正弦定理:asinAbsinBcsinC
3、2R(其中 R为ABC外接圆的半径)2.余弦定理a2 b2 c22bccosA,b2a2c22accosB;c2a2b22abcosC 或 cosAb2c2a22bc,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 8 页2 cosBa2c2b22ac,cosCa2b2c22ab.3.三角形中的常见结论(1)A BC.(2)在三角形中大边对大角,大角对大边:ABabsinAsinB.(3)任意两边之和大于第三边,任意两边之差小于第三边(4)ABC的面积公式 S12a2 h(h 表示 a 边上的高);S12absinC 12acsinB 12bcsinA abc4R
4、;S12r(a bc)(r为内切圆半径);SP(Pa)(Pb)(Pc),其中P12(a bc)备课札记 题型 1 正弦定理解三角形例 1在ABC中,a3,b2,B45.求角 A、C和边 c.解:由正弦定理,得asinAbsinB,即3sinA2sin45,sinA32.ab,A 60或 A120.当 A60时,C180 45 60 75,cbsinCsinB622;当 A120时,C 180 45 120 15,cbsinCsinB622.变式训练在ABC中,(1)若 a4,B 30,C 105,则 b_(2)若 b3,c2,C45,则 a_(3)若 AB 3,BC 6,C30,则 A _精品
5、w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4
6、I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4
7、D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6
8、B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M
9、5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY
10、7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10
11、R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A23 答案:(1)22(2)无解(3)45 或 135解析:(1)已知两角和一边只有一解,
12、由B30,C 105,得 A 45.由正弦定理,得basinBsinA4sin30 sin45 22.(2)由正弦定理得sinB bsinCC321,无解(3)由正弦定理BCsinAABsinC,得6sinA312,sinA 22.BCAB,AC,A45或 135.题型 2 余弦定理解三角形例 2在ABC中,a、b、c 分别是角A、B、C的对边,且cosBcosCb2ac.(1)求角 B的大小;(2)若 b13,ac4,求 ABC的面积解:(1)由余弦定理知:cosBa2c2b22ac,cosCa2b2c22ab.将上式代入cosBcosCb2ac,得a2 c2 b22ac22aba2b2c2
13、b2ac,整理得 a2c2b2ac.cosBa2c2b22acac2ac12.B 为三角形的内角,B 23.(2)将 b13,ac4,B 23代入b2a2c22accosB,得b2(a c)22ac2accosB,13 16 2ac 112,ac 3.SABC12acsinB 334.备选变式(教师专享)(20142南京期末)在ABC中,角 A、B、C所对的边分别是a、b、c,已知 c2,C3.(1)若ABC的面积等于3,求 a、b;(2)若 sinC sin(B A)2sin2A,求 ABC的面积解:(1)由余弦定理及已知条件,得a2b2ab4.因为 ABC的面积等于3,所以12absinC
14、 3,得 ab4.联立方程组a2b2ab4,ab4,解得 a2,b2.(2)由题意得sin(B A)sin(B A)4sinAcosA,所以 sinBcosA 2sinAcosA.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2
15、文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:C
16、K4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1
17、S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 H
18、T6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U
19、1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2
20、ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M
21、10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A24 当 cosA0 时,A2,所以 B6,所以 a433,b233.当 cosA0 时,得 sinB 2sinA,由正弦定理得b2a,联立方程组a2b2ab4,b2a,解得 a233,b433.所以 ABC的面积 S12absinC 233.题型 3 三角形形状的判定例 3在ABC中,a、b、c 分别表示三个内角 A、B、C 的对边,如果(a2b2)sin(AB)(a2b2)sin(A B),判断三角形的形状解:已知等式可化为a2sin(AB)sin(A B)b2 sin(A B)sin(A B),
22、2a2cosAsinB 2b2cosBsinA.由正弦定理得sin2AcosAsinB sin2BcosBsinA,sinAsinB(sinAcosAsinBcosB)0,sin2A sin2B.由 02A2,02B2 得2A 2B或 2A2B,即 ABC为等腰或直角三角形备选变式(教师专享)已知 ABC中,b2 cosCc2 cosB1cos2C1cos2B,试判断 ABC 的形状解:由已知,得1cos2C1cos2B2cos2C2cos2Bcos2Ccos2Bb2 cosCc2 cosB,cosCcosBbc.由正弦定理知bcsinBsinC,sinBsinCcosCcosB.sinCco
23、sC sinBcosB,即sin2C sin2B,因为 B、C均为 ABC的内角所以2C2B或 2C2B 180,所以 BC或BC 90,故三角形为等腰或直角三角形题型 4 正弦定理、余弦定理的综合应用例 4在ABC中,A、B、C所对的边分别是a、b、c,且 bcosB 是 acosC、ccosA 的等差中项(1)求 B的大小;(2)若 ac10,b2,求 ABC的面积解:(1)由题意,得acosC ccosA 2bcosB.由正弦定理,得sinAcosC cosAsinC 2sinBcosB,即 sin(A C)2sinBcosB.A C B,0B,sin(AC)sinB 0.cosB 12
24、,B 3.(2)由 B3,得a2 c2 b22ac12,即(ac)22ac b22ac12,ac 2.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 4 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R
25、6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 正弦 定理 余弦
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内