含参量积分的分析性质及其应用.pdf
《含参量积分的分析性质及其应用.pdf》由会员分享,可在线阅读,更多相关《含参量积分的分析性质及其应用.pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-1-含参量积分的分析性质及其应用班级:11 数学与应用数学一班成绩:日期:2012 年 11 月 5 日-2-含参量积分的分析性质及其应用1.含参量正常积分的分析性质及应用1.1 含参量正常积分的连续性定理1 若二 元函 数),(yxf在矩 形区 域,dcbaR上 连续,则 函数x=dcdyyxf),(在a,b 上连续.例 1 设)sgn(),(yxyxf(这个函数在 x=y 时不连续),试证由含量积分10),()(dxyxfyF所确定的函数在),(上连续.解因为10 x,所以当 y0,则 sgn(x-y)=1,即 f(x,y)=1.-1,xy 则yyydxdxyF01.21)1()(1,y
2、1 时,f(x,y)=-1,则101)1()(dxyF,即 F(x)=1-2y,0y1 又因).1(1)(lim),0(1lim10FyFFyyF(y)在 y=0 与 y=1 处均连续,因而 F(y)在),(上连续.例 2 求下列极限:(1)dxax11220lim;(2)2020coslimxdxx.解(1)因为二元函数22x在矩形域R=-1,1-1.1上连续,则由文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N
3、4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H
4、7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N
5、4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H
6、7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N
7、4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H
8、7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N
9、4W9X9-3-连续性定理得dxax1122在-1,1上连续.则1122110112201limlimdxxdxaxdxax.(2)因为二元函数axx cos2在矩形域2,2 2,0R上连续,由连续性定理得,函数202cosaxdxx在2,2上连续.则.38coslim2020220dxxaxdxx例 3 研究函数)(xFdxyxxyf1022)(的连续性,其中 f(x)在闭区间 0,1 上是正的连续函数.解对 任 意00y,取0,使00y,于 是 被 积 函 数22)(yxxyf在,1,000yyR上连续,根据含参量正常积分的连续性定理,则 F(y)在区间,00yy上连续,由0y的任意性知,
10、F(y)在),0(上连续.又因dxyxxyfdxyxxyfyF10221022)()()(,则 F(y)在)0,(上 连续.当 y=0 处0)(0yF.由于)(xf为0,1 上的正值连续函数,则存在最小值 m0.ymdxyxmydxyxxyfyF1arctan)()(10221022,从而04)(lim0myFy,但F(y)在 y=0 处不连续,所以 F(y)在),0(),(上连续,在 y=0 处不连续.定理 2 设二元函数 f(x,y)在区域 G=(x,y)|bxaxdyxc),()(上连续,其中 c(x),d(x)为a,b 上的连续函数,则函数 F(x,y)=)()(),(xdxcdyyx
11、f在a,b上连续.例 4 求12201limxdx.解记1221)(xdxI.由于2211,1,x都是和 x 的连续函数,由定理 2 知)(I在0处连续,所以41)0()(lim1020 xdxII.例 5 证明函数dxeyFyx0)(2)(在),(上连续.证明对),(y,令 x-y=t,可推得文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4
12、S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5
13、I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4
14、S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5
15、I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4
16、S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5
17、I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9-4-00000)(2)(22222yyttttyxdtedte
18、dtedtedxeyF.对于含多量正常积分02ytdte,由连续性定理可得02ytdte在),(上连续,则dxeyFyx0)(2)(在),(上连续.1.2 含参量正常积分的可微性定理 3 若函数fyx,与其偏导数xfyx,都在矩形区域 R=a,b*c,d上连续,则x=dyyxfdc),(在a,b 上可微,且dyyxfxdyyxfdxddcdc),(),(.定理 4 设fyx,xfyx,在 R=a,b*p,q上连续,cx,dx为定义在a,b 上其值含于 p,q 內的可微函数,则函数 Fx=)()(),(xdxcdyyxf在a,b 上可微,且).()(,()()(,(),()()()(xcxcxf
19、xdxdxfdyyxfxFxdxcx定理5 若函数fyx,及xfyx,都在 a,b;c,d上连续,同时在 c,d上)(ya及)(yb皆存在,并且 aa(y)b,a b(y)b(c yd),则)()()()()(),()(),(),(),()(ybyayybyayayyafybyybfdxyxfdxyxfdydyF.证明考虑函数 F(y)在c,d上任何一点处得导数,由于)()()(),(),(),()(3)()(21)()()()(000yFyFyFdxyxfdxyxfdxyxfyFyayaybybybyao.现在分别考虑)3,2,1)(iyFi在点0y处得导数.由定理 5 可得)()(0010
20、0),()(ybyaydxyxfyF.由于0)(02yF,所以dxyyyxfyyyFyyyFyFyFybybyyyyoyyo)()(0020220;2000),(lim)(lim)()(lim)(.应用积分中值定理),()()(lim)(00020yfyyybybyFyy.这里在)(yb和)(0yb之间.再注意到fyx,的连续性及 b(y)的可微性,于是得到),()()(00002yybfybyF.文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO
21、7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X
22、9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO
23、7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X
24、9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO
25、7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X9文档编码:CF4D8Q5I4H7 HO7H9B3S3Z8 ZL4S5N4W9X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参量 积分 分析 性质 及其 应用
限制150内