26..5特征值与特征向量矩阵的简单应用.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《26..5特征值与特征向量矩阵的简单应用.pdf》由会员分享,可在线阅读,更多相关《26..5特征值与特征向量矩阵的简单应用.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/11 本资料来源于七彩教育网http:/ 26.5 特征值与特征向量矩阵的简单应用【知识网络】1、矩阵特征值与特征向量的定义,能从几何变换的角度说明特征向量的意义;2、会求二阶方阵的特征值与特征向量只要求特征值是两个不同实数的情形);3、了解三阶或高阶矩阵;4、矩阵的应用。【典型例题】例 1:1)、已知5a,且(4,)an,则 n 的值是 )A3 B 3 C 3 D不存在2z4sV2AHVW 答案:C。解读:5422na,解得 n=3。2z4sV2AHVW A、931 B、1031 C、1131 D、1231答案:C。解读:1010113 0333 030 1110 11。3)设某校午餐有
2、A、B 两种便当选择,经统计数据显示,今天订 A 便当的人,隔天再订A 便当的机率是35;订 B 便当的人,隔天再订 B 便当的机率为45,已知星期一有40%的同学订了A 便当,60%的 同 学 订 了 B 便 当,则 星 期 四 时 订A 便 当 同 学 的 比 率 为)2z4sV2AHVW 2/11 A、208625 B、209625 C、210625 D、211625答案:D。解读:设 M=31552455,则 M3473922111251255625788634141251255625。(+3-(-25(-2=2+2-8=0 解得,矩阵 M的两个特征值1=-4,2=2。5)一实验室培养
3、两种菌,令na和nb分别代表两种培养菌在时间点 n 的数量,彼此有如下的关系112(),2(0,1,2)nnnnnaabbb n,若二阶矩阵A=bc da满足n+bn+3caAnbna,(-3-(-25(-2=2-2-8=0 解得,矩阵 M的两个特征值1=4,2=-2 设属于特征值1=4 的特征向量为yx,则它满足方程:(1+1x+(-2y=0 即:y=0 也就是 5 x-2y=0 则可取52为属于特征值1=4的一个特征向量设属于特征值1=-2 的特征向量为yx,则它满足方程:(2+1x+(-2y=0 即:y=0 也就是 x+2y=0 则可取12-为属于特征值2=-2 的一个特征向量综上所述:
4、M=251-32有两个特征值1=4,2=-2,属于1=4 的一个特征向量为52,属于2=-2 的一个特征向量为12-。例 4:已知:矩阵 M=251-32,向量=161求 M3答案:由上题可知1=51,2=12-是矩阵M 分别对应特征值1=4,2=-2的两 个 特 征向量,而1与2不共 线。又=161=351+12-=31+22z4sV2AHVW 文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5
5、I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X
6、5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10
7、X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y1
8、0X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y
9、10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8
10、Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ
11、8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O44/11 ABCDM3=M331+2)=3 M31+M32 =3131+232=34351+,b(1,2,则 3a2b的坐标是 (A(7,1 B(7,1 C(7,1 D(7,1 答案:B。2矩阵4 22 1的特征值是 )2z4sV2AHVW A、0和 5 B、0 和5 C、1和 4 D、1和4 答 案:A。解 读:由 已
12、 知2()(4)(1)450f,解 得120,5。3下图为一个网络,则一级路矩阵为 )2z4sV2AHVW A、0 1 1 21 0 1 01 1 0 02 0 0 0 B、0 1 2 21 0 1 22 1 0 02 2 0 0 C、0 2 2 22 0 2 12 2 0 02 1 0 0 D、0 2 2 22 0 2 22 2 0 22 2 2 0答案:A。4矩阵 A=1 42 3的特征多次式为。答案:245。解读:21 -4()45-2 -3f。5设 A 是一个二阶矩阵,满足A11300,且 A11633,则A=。答案:3 10 6。解读:设 A=bc da,则3,0,36,318,3,
13、1,0.6acabcdabcd。6矩阵 M=1 23 2的所有特征向量为。文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:
14、CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码
15、:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编
16、码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档
17、编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文
18、档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4
19、文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O
20、45/11 答案:k23和k1,(0)1k。解读:已知2()(1)(2)6340,f121,4,对应的特征向量为11和23,故所有的特征向量为:k23和 k1,(0)1k。7已知点列*(,)()nnnPxynN满足1124nnnnnnxxyyxy,且111,2xy,则P4坐标为。答案:2,6)。解读:23232(2)42()(43)4(2)4434()(43)nnnnnnnnnnnnnnnnnnnnnxxyxyyxyxyyxyxyxyyyxy即3344nnnnnnxxyyxy,故334 1-4 -1nnnnxxyy,又111,2xy,4 112-4 -126,即 P42,6)。8求矩阵 A=3
21、 10 -1的特征值与特征向量。答案:矩阵A 的特征多项式()(3)(1),3f或1,其相应的特征向量分别为10和14。9已知 ABC的坐标分别为A1,1)、B3,2)、C 其坐标形式分别为:y x=11+t 12 (tR 由,直线 AB的坐标形式方程可化为:t1y2t1x消去 t 后得普通方程为:x-2y+1=0 所以所求 高 为C到 直 线AB的 距 离,设 为h,则:h=文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3
22、V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X
23、3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7
24、X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG
25、7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 HG7X3V2W4M5 ZZ8Y10X5I1O4文档编码:CC5X7U10W5V10 H
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 26. 特征值 特征向量 矩阵 简单 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内