7-4二元一次不等式(组)与简单的线性规划问题[收.pdf
《7-4二元一次不等式(组)与简单的线性规划问题[收.pdf》由会员分享,可在线阅读,更多相关《7-4二元一次不等式(组)与简单的线性规划问题[收.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、选择题1(文)(2011 浙江文,3)若实数 x,y满足不等式组x2y502x y70 x0,y 0,则 3x4y的最小值是()A13 B15 C20 D28 答案A 解析本题考查了线性规划问题如上图所示,令 z3x4yy 34xz4求 z的最小值,即求直线y34xz4截距的最小值经讨论之,点 M 为最优解,即为直线x2 y50与 2xy70的交点,解之得M(3,1)zmin9413.(理)(2011 浙江理,5)设实数 x、y满足不等式组x2y502xy70 x0,y 0,若 x、y为整数,则 3x4y 的最小值为()A14 B16 C17 D19 答案B 解析本题主要考查简单线性规则问
2、题等基础知识,如上图,作出不等式组表示的平面区域,作直线 l0:3x4y0平移 l0与平面区域有交点,由于x,y为整数,结合图形可知当x4,y1时,3x4y取最小值为16,选 B.2(2011 广东理,5)已知平面直角坐标系 xOy上的区域 D 由不等式组0 x 2y2x 2y给定,若 M(x,y)为 D 上的动点,点A的坐标为(2,1),则zOM OA的最大值为()A4 2 B3 2 C4 D3 答案C 文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B
3、10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M
4、6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S
5、4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R
6、5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F
7、9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J
8、4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:
9、CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4解析本题考查线性规划、数量积的坐标运算OMOA(x,y)(2,1)2xy,作直线 l0:2xy0,将 l0向右上方平移,当l0过区域 D中点(2,2)时,OM OA 2xy取最大值 2 224.选 C.3给出平面区域如下图所示,若使目标函数Zaxy(a0)取得最大值的最优解有无穷多个,则a的值为()A.14B.35C.4 D.53答案B 解析目标函数 Za
10、x y(a0)取得最大值的最优解有无穷多个,则l应与 AC重合,文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10
11、M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1
12、S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5
13、R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4
14、F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8
15、J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码
16、:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4即aKAC22521 535,a35.4(文)(2012 汕头模拟)二元一次不等式(x2y1)(xy3)
17、0表示的平面区域为()答案C 解析(x2y1)(xy3)0,xy30,或x2y10,画图易知,C正确(理)(教材改编题)如图阴影部分表示的区域可用二元一次不等式组表示为()文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码
18、:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1
19、B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10
20、M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1
21、S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5
22、R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4
23、F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8
24、J4A.xy10 x2y20B.xy10 x2y20C.xy10 x2y20D.xy10 x2y20答案A 解析两直线方程分别为x2y20与 xy10.由(0,0)点在直线x2y20右下方可知 x2y20,又(0,0)在直线 xy10左下方可知 xy10,即xy10 x2y20为所表示的可行域5在平面直角坐标系上,不等式组yx1,y3|x|1所表示的平面区域的面积为()A.2 B.32C.3 22D2 答案B 解析yx1,y3|x|1?yx1,y3x1,x0或yx1,y3x1,x0,画出可行域如下图,SABCSADCSADB12211221232.文档编码:CU6Z1B10A10M6 HI1S
25、4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R5 ZE4F9Y9X8J4文档编码:CU6Z1B10A10M6 HI1S4J3O5R
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 不等式 简单 线性规划 问题
限制150内