2021年高二数学上册各章节知识点总结(大纲版)..pdf
《2021年高二数学上册各章节知识点总结(大纲版)..pdf》由会员分享,可在线阅读,更多相关《2021年高二数学上册各章节知识点总结(大纲版)..pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、不等式单元知识总结一、不等式的性质1两个实数a 与 b 之间的大小关系(1)ab0ab(2)ab=0a=b(3)ab0ab ;若、,则;abR(4)ab1ab(5)ab=1a=b(6)ab1ab2不等式的性质(1)abba()对称性(2)ab bcac()传递性(3)abacbc()加法单调性abc0acbc(4)(乘法单调性)ab c0acbc(5)abcacb()移项法则(6)abcdacbd()同向不等式可加(7)abcdacbd()异向不等式可减(8)ab0cd0acbd()同向正数不等式可乘|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第
2、 1 页,共 17 页(9)ab00cdbd()异向正数不等式可除ac(10)ab0nNab()nn 正数不等式可乘方(11)ab0nNa()n 正数不等式可开方bn(12)ab01a()正数不等式两边取倒数1b3绝对值不等式的性质(1)|a|a|a|=a (a0)a (a0);,(2)如果 a0,那么|x|axaaxa22 ;|x|axaxaxa22 或 (3)|ab|a|b|(4)|ab|(b0)|ab(5)|a|b|ab|a|b|(6)|a1a2 an|a1|a2|an|二、不等式的证明1不等式证明的依据(1)abab0abab0ab0abab0abab=0a=b实数的性质:、同号;、异
3、号 ;(2)不等式的性质(略)(3)重要不等式:|a|0;a20;(ab)20(a、bR)a2b2 2ab(a、bR,当且仅当a=b 时取“=”号)、,当且仅当时取“”号ab2ab(abRa=b=)2不等式的证明方法(1)比较法:要证明a b(ab),只要证明ab 0(ab0),这种证明不等式的方|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 2 页,共 17 页文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R
4、10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D
5、3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1
6、F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T
7、1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F
8、7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3
9、F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT
10、7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7法叫做比较法用比较法证明不等式的步骤是:作差变形判断符号(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法证明不等式除以上三种基本方法外,还有反证法、数学归纳法等三、解不等式1解不等式问题的分类(1)解一元一次不等式(2)解一元
11、二次不等式(3)可以化为一元一次或一元二次不等式的不等式解一元高次不等式;解分式不等式;解无理不等式;解指数不等式;解对数不等式;解带绝对值的不等式;解不等式组2解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质(2)正确应用幂函数、指数函数和对数函数的增、减性(3)注意代数式中未知数的取值范围3不等式的同解性(1)f(x)g(x)0f(x)0 g(x)0f(x)0 g(x)0与或同解(2)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0与或同解|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 3 页,共 17 页文档编码:CT
12、7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA
13、2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5
14、S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:
15、CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2
16、HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 Z
17、Q5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编
18、码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7(3)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0(g(x)0)与或同解(4)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0(g(x)0)与或同解(5)|f(x)|g(x)与 g(x)f(x)g(x)同解(g(x)0)(6)|f(x)|g(x)与 f(
19、x)g(x)或 f(x)g(x)(其中 g(x)0)同解;与g(x)0 同解(7)f(x)g(x)f(x)g(x)f(x)0g(x)0f(x)0g(x)02与或同解(8)f(x)g(x)f(x)g(x)f(x)02与同解(9)当 a1 时,af(x)ag(x)与 f(x)g(x)同解,当0 a1 时,af(x)ag(x)与 f(x)g(x)同解(10)a1log f(x)log g(x)f(x)g(x)f(x)0aa当 时,与同解当 时,与同解0a1log f(x)log g(x)f(x)g(x)f(x)0g(x)0aa单元知识总结一、坐标法1点和坐标建立了平面直角坐标系后,坐标平面上的点和一
20、对有序实数(x,y)建立了一一对应的关系2两点间的距离公式设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离|P P|=12()()xxyy212212|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 4 页,共 17 页文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S
21、3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:C
22、T7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 H
23、A2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ
24、5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码
25、:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2 HA2F7D3Q8V8 ZQ5S3F1F6Q7文档编码:CT7T1R10Y5U2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 上册 各章 知识点 总结 大纲
限制150内