多元函数微分学及应用(隐函数反函数)_23405397.pdf
《多元函数微分学及应用(隐函数反函数)_23405397.pdf》由会员分享,可在线阅读,更多相关《多元函数微分学及应用(隐函数反函数)_23405397.pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习题课:多元函数求偏导,多元函数微分的应用多元复合函数、隐函数的求导法(1)多元复合函数设二元函数),(vufz在点),(00vu处偏导数连续,二元函数),(),(yxvvyxuu在点),(00yx处 偏 导 数 连 续,并 且),(),(000000yxvvyxuu,则 复 合 函 数),(),(yxvyxufz在点),(00yx处可微,且xyxvvvufxyxuuvufxzyx00000000),(,00yyxvvvufyyxuuvufyzyx00000000),(,00多元函数微分形式的不变性:设),(),(),(yxvvyxuuvufz,均为连续可微,则将z看成yx,的函数,有dyyz
2、dxxzdz计算yvvfyuufyzxvvfxuufxz,,代人,dvvfduufdyyvdxxvvfdyyudxxuufdyyvvfyuufdxxvvfxuufdyyzdxxzdz我们将dvvfduufdyyzdxxzdz叫做微分形式不变性。例1 设xyxyfxz,3,求yzxz,。解:xydfxydfxfdxxdfxdxxfdz213232)(3322132(3xydxxdyfydxxdyfxfdxxdyfxfxdxxyfyfxfx221421323由微分形式不变性,dyfxfxdxxyfyfxfxdyyzdxxzdz221421323故22142132,3fxfxyzxyfyfxfxxz
3、。例2 已知)1(1xyx,求dydx.解 考虑二元函数vuy,uxvx11,,应用推论得.dxdvvydxduuydxdy).ln1(11)(ln112221xxxuuxvuxvv(2)隐函数若函数xyy,由方程0,yxF确定,求导之函数?按隐函数定义有恒等式:0,xyxF0,xyxFdxd,0,xyxyxFxyxFyxxyxFxyxFxyyx,。从这是可见:函数xyy可导有一个必要条件是,0,yxFy.例3 已知函数 yfx()由方程,22bayxfbyax是常数,求导函数。解:方程22yxfbyax两边对 x 求导,dxdyyxyxfdxdyba22)(22)(2)(22222yxfyb
4、ayxfxdxdy一般来说,若函数xyy,由方程0,yxF确定,求导之函数?将y看作是nxx,.,1的函数),.,(1nxxyxyy,对于方程0),.,(,.,(11nnxxyxxF两端分别关于ix求偏导数得到,并解ixf,可得到公式 :yxFyxFxyyxii,例4 设函数y(z)yzxx),(由方程组01201222222zyxzyx确定,求文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编
5、码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I1
6、0 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7
7、 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文
8、档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8
9、I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4
10、J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N
11、9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9dzdydzdx,.解121222222zyxzyxzdydzydxdzxzdydzydxdzx242222解方程得:dzdydzdx=xzyzxyzzxxyyxy8124122222441由此得到yzdzdyxzdzdx2,3.例5 已知函数yxzz,由参数方程:uvzvuyvuxsincos,给定,试求yzxz,.解这个问题涉及到复合函数微分法与隐函数微分法.yx,是自变量,vu,是中间变量(vu,是yx,的函数),先由zuv得到xvuxuvxvvzxuuzxzyvuyuvyvvzyuuzyzu v,是由方
12、程),(),(yxvvyxuu的 x y,的隐函数,在这两个等式两端分别关于x y,求偏导数,得xvvuxuvxvvuxuvcossin0sincos1,yvvuyuvyvvuyuvcossin1sincos0得到uvxvvyuuuxvvxucos,sin,sin,cos将这个结果代入前面的式子,得到vvvxvuxuvxzsincos与vvvyvuyuvyzcossin(3)隐函数 函数),(yxuu由方程0),(0),(),(tzhtzygtzyxfu确定,求yuxu,解:函数关系分析:5(变量)3(方程)=2(自变量);一函 (u),二自(x,y),二中(z,t)文档编码:CG3N9K9B
13、8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R
14、4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7
15、N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K
16、9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U
17、9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8
18、P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N
19、9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9xfxu,yttfyzzfyfyu0),(),(1tgzgzhtgthtzhgytyz,zhtgthzgygthzfzhtfyfyu.二阶偏导数:一阶导函数的偏导数例6),(yxzz由2222azyx决定,求yxz2解:022xzzx,022yzzyzyyzzxxz,xzzyyxz223z
20、xy例7 设22,xxxfxg,其中函数f 于的二阶偏导数连续,求22dxxgd例8 设 zfxyxy(,),f 二阶连续可微,求22xz.解记yxvxyu,;vffuff21,22222211,vffuff,uvffvuff221212,则211fyfyxvvfxuufxz,xfyxfyxzxxz21221因为vffuff21,都是以u v,为中间变量,以yx,为自变量的函数,所以xvfxufxf1211112111fyfyxvfxufxf2221222211fyfy将以上两式代入前式得:fyffyxz222121122212.文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN
21、8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码
22、:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10
23、 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7
24、ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档
25、编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I10 HM7A7U9R4J7 ZN8L1K8P7N9文档编码:CG3N9K9B8I
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 微分学 应用 反函数 _23405397
限制150内