2022年二次函数的最值问题总结 .pdf
《2022年二次函数的最值问题总结 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数的最值问题总结 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数的最值问题二次函数2(0)yaxbxca是初中函数的主要内容,也是高中学习的重要基础在初中阶段大家已经知道:二次函数在自变量x取任意实数时的最值情况(当0a时,函数在2bxa处取得最小值244acba,无最大值;当0a时,函数在2bxa处取得最大值244acba,无最小值本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题同时还将学习二次函数的最值问题在实际生活中的简单应用二次函数求最值(一般范围类)例 1当22x时,求函数223yxx的最大值和最小值分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时
2、相应自变量x的值解:作出函数的图象当1x时,min4y,当2x时,max5y例 2当12x时,求函数21yxx的最大值和最小值解:作出函数的图象当1x时,min1y,当2x时,max5y由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异下面给出一些常见情况:例 3当0 x时,求函数(2)yxx的取值范围解:作出函数2(2)2yxxxx在0 x内的图象可以看出:当1x时,min1y,无最大值所以,当0 x时,函数的取值范围是1y例 4当1t
3、xt时,求函数21522yxx的最小值(其中t为常数)分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置解:函数21522yxx的对称轴为1x画出其草图(1)当对称轴在所给范围左侧即1t时:当xt时,2min1522ytt;(2)当对称轴在所给范围之间即1101ttt时:当1x时,2min1511322y;(3)当对称轴在所给范围右侧即110tt时:当1xt时,22min151(1)(1)3222yttt综上所述:2213,023,0115,122ttytttt在实际生活中,我们也会遇到一些与二次函数有关的问题:二次函数求最值(经济类问题)例 1为了扩大内需,让惠于
4、农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图所示的一次函数关系随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图所示的一次函数关系文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7
5、 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3
6、ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档
7、编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8
8、W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L
9、3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8
10、文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9
11、B8W7 HY9C5V2D3L3 ZS2N1W5A2B8(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益Z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值分析:(1)政府未出台补贴措施前,商场销售彩电台数为800 台,每台彩电的收益为200 元;(2)利用两个图像中提供的点的坐标求各自的解析式;(3)商场销售彩电的总收益商场销售彩电台数每台家电的收益,将(2)中的关系式代入得到二次函数,再求二次函数的最大值.解:(1)该商
12、场销售家电的总收益为800 200160000(元);(2)依 题 意 可 设1800yk x,2200Zk x,有14008001200k,2200200160k,解得12115kk,所以800yx,12005Zx(3)1(800)2005WyZxx21(100)1620005x,政府应将每台补贴款额x定为 100 元,总收益有最大值,其最大值为162000元说明:本题中有两个函数图像,在解题时要结合起来思考,不可顾此失彼.例 2凯里市某大型酒店有包房100 间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20 元,则减少10 间包房租出,若每间包房收
13、费再提高20 元,则再减少10 间包房租出,以每次提高20 元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与 x 之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为 y(元),请写出y 与 x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.分析:(1)提价后每间包房的收入原每间包房收包房费+每间包房收包房提高费,包房减少数每间包房收包房提高费数量的一半;(2)酒店老板每天晚餐包房总收入提价后每间包房的收入每天包房租出的数量,得
14、到二次函数后再求y 取得最大值时x 的值.解:(1)xy1001,xy212;(2))21100()100(xxyy11250)50(212x,因为提价前包房费总收入为 100 100=10000,当 x=50 时,可获最大包房收入11250 元,因为 1125010000 又因为每次提价为20 元,所以每间包房晚餐应提高40 元或 60 元.说明:本题的答案有两个,但从“投资少而利润大”的角度来看,因尽量少租出包房,所以每间包房晚餐应提高60 元应该更好.例 3某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查调查发现这种水产品的每千克售价1y(元)
15、与销售月份x(月)文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码
16、:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7
17、 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3
18、ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档
19、编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8
20、W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L
21、3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8满足关系式1y36x83,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示(1)试确定bc、的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大
22、?最大利润是多少?分析:(1)将点(3,25),(4,24)代入求b、c 的值;(2)y1y-2y;(3)将(2)中的二次函数配方为顶点式,再利用二次函数的增减性,在满足“五一”之前的前提下求最大值.解:(1)由题意:22125338124448bcbc,解得7181292bc;(2)12yyy23115136298882xxx21316822xx;(3)21316822yxx2111(1236)46822xx21(6)118x.108a,抛物线开口向下在对称轴6x左侧y随x的增大而增大由题意5x,所 以 在4月 份 出 售 这 种 水 产 品 每 千 克 的 利 润 最 大 最 大 利 润2
23、11(46)111082(元)说明:本题在x 6,即 6 月份时取得最大值,但题目要求在“五一”之前,所以要将二次函数配方为顶点式,利用二次函数的增减性来求解.例 4.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数1623,3054mxx(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?25 24 y2(元)x(月)1 2 3 4 5 6 7 8 9 10 11 122218yxbxcO 文档编码:CZ4T10T9B8W7
24、 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3
25、ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档编码:CZ4T10T9B8W7 HY9C5V2D3L3 ZS2N1W5A2B8文档
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二次函数的最值问题总结 2022 二次 函数 问题 总结
限制150内