2022年二次函数的几何最值问题2 .pdf
《2022年二次函数的几何最值问题2 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数的几何最值问题2 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习好资料欢迎下载二次函数与几何图形结合 -探究面积最值问题方法总结:在解答面积最值存在性问题时,具体方法如下:根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长;观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解;结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。(2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4)(1)求过 O、B、A 三点的抛物线的
2、解析式(2)在第一象限的抛物线上存在点M,使以 O、A、B、M 为顶点的四边形面积最大,求点M 的坐标(3)作直线x=m交抛物线于点P,交线段OB 于点 Q,当PQB 为等腰三角形时,求m 的值学习好资料欢迎下载(2014 自贡)如图,已知抛物线cxaxy232与 x 轴相交于 A、B 两点,并与直线221xy交于 B、C 两点,其中点C 是直线221xy与 y 轴的交点,连接AC(1)求抛物线的解析式;(2)证明:ABC 为直角三角形;(3)ABC 内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G 在 ABC 各边上)若能,求出最大面积;若不能,请说明理由文档编码:CI10U7L3J
3、6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3
4、J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L
5、3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7
6、L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U
7、7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10
8、U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI1
9、0U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10学习好资料欢迎下载(2014 黔西南州)(16 分)如图所示,在平面直角坐标系中,抛物线y=ax2+
10、bx+c经过 A(3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接 AD,点 P 是线段 AD 上一个动点(不与A、D 重合),过点P 作 y 轴的垂线,垂足点为E,连接 AE(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)如果 P 点的坐标为(x,y),PAE 的面积为S,求 S 与 x 之间的函数关系式,直接写出自变量x 的取值范围,并求出S 的最大值;(3)在(2)的条件下,当 S 取到最大值时,过点 P 作 x 轴的垂线,垂足为 F,连接 EF,把 PEF沿直线 EF折叠,点 P 的对应点为点P,求出P的坐标,并判断 P是否在该抛物线上文档编码:CI10U7L3J6D
11、10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6
12、D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J
13、6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3
14、J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L
15、3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7
16、L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U
17、7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10学习好资料欢迎下载(2014 兰州)(12 分)如图,抛物线y=221x+nmx与 x 轴交于 A、B
18、两点,与 y 轴交于点C,抛物线的对称轴交 x 轴于点 D,已知 A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使 PCD 是以 CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点 E时线段 BC 上的一个动点,过点E 作 x 轴的垂线与抛物线相交于点F,当点 E 运动到什么位置时,四边形 CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E点的坐标文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P
19、9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8
20、P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T
21、8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7
22、T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY
23、7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 Z
24、Y7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9
25、ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10文档编码:CI10U7L3J6D10 HB4K7G5B5K9 ZY7T8P9I4J10学习好资料欢迎下载(2014?衡阳)二次函数y=ax2+bx+c(a 0)的图象与x 轴的交点为A(-3,0)、B(1,0)两点,与y 轴交于点 C(0,-3m)(其中m 0),顶点为D(1)求该二次函数的解析式(系数用含m 的代数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二次函数的几何最值问题2 2022 二次 函数 几何 问题
限制150内