《解一元二次方程——配方法(第一课时)》初中数学全国优质课教案教学设计.pdf
《《解一元二次方程——配方法(第一课时)》初中数学全国优质课教案教学设计.pdf》由会员分享,可在线阅读,更多相关《《解一元二次方程——配方法(第一课时)》初中数学全国优质课教案教学设计.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解一元二次方程配方法(第一课时 )教学设计教学目标1.知识技能(1)能正确运用平方根的定义解形如x2=n(n0)与(mx+n)2=p(p0)的一元二次方程;(2)能正确书写一元二次方程的根;(3)能指出转化后的两个一元二次方程.会用配方法求出二次项系数为1、一次项系数为偶数(绝对值小于10)的一元二次方程的根2.数学思考在根据平方根的定义解形如x2=n(n 0)的方程的过程中,能运用“整体性”将此方法迁移到解形如(mx+n)2=p(p0)的方程.3.解决问题在学习的过程,体会配方法的运用,并能求解形如a(ex+f)2+c=0 型的一元二次方程,进一步发展符号感,提高代数运算能力.4.情感态度体
2、验探究的乐趣,克服数学活动中的困难,促进形成学好数学的自信心,体会与他人作交流的优点。重难点、关键重点:根据平方根的定义理解并能求解形如x2=n(n0、m x+n)2=p(p0)的方程难点:解形如x2+ax+c=0(|a|10,且 a 为偶数)的方程.关键:将一元二次方程转化成两个一元一次方程教学准备教师准备:制作课件,精选习题与达标检测题.学生准备:复习有关知识,预习本节课内容.教学过程一、问题情境,导入新课小知识:堰塞湖堰塞湖是由火山熔岩流,冰碛物或由地震活动使山体岩石崩塌下来等原因引起山崩滑坡体等堵截山谷,河谷或河床后贮水而形成的湖泊.堰塞湖的堵塞物不是固定永远不变的,它们也会受冲刷、侵
3、蚀、溶解、崩塌等等。一旦堵塞物被破坏,湖水便漫溢而出,倾泻而下,形成洪灾,极其危险。灾区形成的堰塞湖一旦决口会对下游形成洪峰,破坏性不亚于灾害的破坏力。为此要采取开凿泄洪渠等一系列抢险措施.南方某地区因连降暴雨,山体滑坡导致一条河流形成堰塞湖,为排除险情需要开凿400米长的泄洪渠,已知泄洪渠的截面为梯形下底是上底的3倍,高和上底长度相等,预计需挖土石方总量约为 15000 立方米求所挖泄洪渠的上底长度是多少米?解:设所挖泄洪渠的上底长度是x 米,根据题意得400 x(x2x)150002.师:这个方程是我们上节遇到的一元二次方程,如何解为类型的方程是本节课我们共同学习的目标.上述方程可化x2=
4、25这个方程的解是什么?你会求解吗?生:x=5.师:你的依据是什么?生:我们在八年级学过平方根,用这一定义可得到x=5.师:我们今后将写作:x1=5,x2=5.生:x2=5 不合题意,应舍去因此所挖泄洪渠的上底长度是5 米师:很好!这位同学的数学思维很深刻!二、基于问题,探索方法妨照上述解方程的方法,你能解下列方程吗?(2x-1)2=9.(学生尝试)解:2x1=3.2x1=3 或 2x1=3.所以,方程的两根为x1=2,,x2=1.师:具有什么结构牲的一元二次方程能用上述方法去解呢?你能举出这样的例子吗?生:举例:x2=49;x2=12;(x+1)2=4;(3x-2)2=5 等.师:请同学求解
5、上述方程的根,要求每人至少解两个方程,之后与同伴相互交流你的方法.归纳(学生):在解上述方程时,我们把原来的方程转化成两个一元一次方程.归纳(师):如果方程能化成2xp或2()(0)mxnp p的形式,那么直接开平方可得xp或mxnp练习 1(1)方程 x2=0.25 的根是;(2)方程 2x2=18 的根是;(3)方程(x+1)2=1 的根是.例 1 用开平方法解方程9x2=4.师分析,示范完成解答.解:两边同除以9,得x2=49.利用开平方法,得x=.所以,原方程的根是例 2 用开平方法解方程3x2=4.解:两边同除以3,得.因为负数没有平方根,所以原方程没有实数根.探究一:对于方程x2+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解一元二次方程配方法第一课时 一元 二次方程 配方 第一 课时 初中 数学 全国 优质课 教案 教学 设计
限制150内