《立方根》专题练习.pdf
《《立方根》专题练习.pdf》由会员分享,可在线阅读,更多相关《《立方根》专题练习.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/12 2.3 立方根同步练习一、选择题(共16 小题,每小题4 分,满分64 分)1(4 分)下列说法正确的是()A的立方根是 B的立方根是 C的立方根是D的立方根不存在2(4 分)下列各式正确的有()=0;=6;()3=5;=a;()3=aA5 个B4个C3 个D2 个3(4 分)如果 b 是 a的立方根(ab 0),那么下列结论正确的是()A b也是 a的立方根B b 是 a的立方根Cb 是 a的立方根D以上结论均不正确8(4 分)立方根等于本身的数是()A 1 B0C 1 D 1 或 0 9(4 分)的平方根是()A 4 B2C 2 D不存在10(4 分)下列说法正确的是()A的平方
2、根是 3 B1的立方根是 1 C=1 D0 11(4 分)若代数式在实数范围内有意义,则x 的取值范围为()Ax0 Bx 0 Cx 0 Dx 0 且 X 1 23(4 分)下列说法中正确的是()A 4没有立方根B1的立方根是 1 C的立方根是D5 的立方根是24(4 分)在下列各式中:=,=0.1,=0.1,=27,其中正确的个数是()A1B2C3D425(4 分)如果2(x2)3=6,则 x 等于()ABC或D以上答案都不对26(4 分)如果a是(3)2的平方根,那么等于()A 3 BC 3 D或2/12 27(4 分)若 x0,则等于()AxB2x C0D2x 28(4 分)若 a2=(5
3、)2,b3=(5)3,则 a+b 的值为()A0B 10 C0 或 10 D0 或 10 29(4 分)如图,已知矩形ABOC 的边长 AB=2,OB=1,数轴上点A 表示的数为x,则 x213 的立方根是()A13 B 13 C2D2 33(4 分)下列各组数中表示相同的一组是()A 2与B2 与C2 与D2 与34(4 分)下列计算正确的是()ABCD二、填空题(共18 小题,满分70 分)4(5 分)的立方根是_,125的立方根是_5(5 分)比较大小:(1)_;(2)_;(3)_;(4)_6(5 分)的平方根是_;的立方根是2,则 a=_7(5 分)若一个数的立方根等于这个数的算术平方
4、根,则这个数是_12(5 分)的平方根是_13(5 分)(经典回放)当a0 时,可以化简为_14(5 分)若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那 a叫 8 的_,表示为_27 的立方根是_;0.008 的立方根是_,3 的立方根是_15(5 分)(2013?盐城)16 的平方根是_文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG1
5、0T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I
6、3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK
7、1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S
8、10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档
9、编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6
10、Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4
11、X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z33/12 16(5 分)(1999?山西)的立方根是_17(5 分)如果一个数的立方根等于它本身,那么这个数是_18(5 分)=_,()3=_30(5 分)0.008 的立方根是_;的立方根是_;的立方根是_31(5 分)=_;=_;=_32(5 分)8 的立方根与4 的算术平方根的和是_2.3 立方根 2009年同步练习参考答案与试卷解读一、选择题(共16 小题,每小题4 分,满分64 分)1(4 分)下列说法正确的是()A的立方根是 B的立方根是 C的
12、立方根是D的立方根不存在考点:立方根分析:A、B、C、D 分别根据立方根的性质和概念即可判定解答:解:A、的立方根是,故选项错误;B、的立方根是,故选项错误C、的立方根是,故选项正确;D、的立方根是,故选项错误故选 C点评:本题主要考查了立方根的概念和性质概念:如果一个数x 的立方等于a,即 x 的三次方等于(x3=a),那么这个数x 就叫做 a 的立方根,也叫做三次方根立方根的性质:(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0 的立方根是02(4 分)下列各式正确的有()=0;=6;()3=5;=a;()3=a文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1
13、X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S1
14、0Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编
15、码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z
16、3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X
17、7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10
18、T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3
19、U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z34/12 A5 个B4个C3 个D2 个考点:立方根分析:根据算术平方根的定义即可判定;利用立方根的定义和性质分析求解即可判定解答:解:=0,故说法正确;=6,故说法正确;()3=5,故说法错误;=a,故说法正确;()3=a,故说法正
20、确所以只有 错故选 B点评:主要考查了立方根的性质要求掌握立方根的性质:(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0 的立方根是03(4 分)如果 b 是 a的立方根(ab 0),那么下列结论正确的是()A b也是 a的立方根B b 是 a的立方根Cb 是 a的立方根D以上结论均不正确考点:立方根专题:计算题分析:根据立方根的定义,(b)3=a,则 b3=a,则 b3=a,即 b 是 a的立方根,由此即可判定选择项解答:解:b 是 a的立方根,即b=,=b 即 b 是 a的立方根故选 C点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由
21、开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同8(4 分)立方根等于本身的数是()A 1 B0C 1 D 1 或 0 考点:立方根分析:根据立方根的定义得到立方根等于本身的数解答:解:立方根是它本身有3 个,分别是 1,0故选 D点评:本题主要考查了立方根的性质对于特殊的数字要记住,立方根是它本身有3个,分别是 1,0如立方根的性质:(1)正数的立方根是正数(2)负数的立方根是负数(3)0 的立方根是09(4 分)的平方根是()A 4 B2C 2 D不存在考点:立方根;平方根分析:本题应先计算出的值,再根据平方根的定义即可求得平方根解答:解:(4)3
22、=64 =4 又(2)2=4 4的平方根为 2故选 C点评:本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0 的平方根是0;负数没有平文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4
23、X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG1
24、0T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I
25、3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK1X6Z5S10Z3文档编码:CL6Z3O8F4X7 HG10T2P1I3U7 ZK
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立方根 专题 练习
限制150内