2017数学中考专题6线段最值问题.docx
《2017数学中考专题6线段最值问题.docx》由会员分享,可在线阅读,更多相关《2017数学中考专题6线段最值问题.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、几何中的最值问题几何中最值问题包括:“面积最值”及“线段(和、差)最值”. 求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解; 求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.常用定理:1、两点之间,线段最短(已知两个定点时)2、垂线段最短(已知一个定点、一条定直线时)3、三角形三边关系(已知两边长固定或其和、差固定时) PA+PB最小,需转化,使点在线异侧 |PA-PB|最大,需转化,使点在线同侧4、 圆外一点P与圆心的连线所成的直线与圆的两个交点,离P最近的点即为P到圆的最近距离,离P最远的点即为P到圆的最远距离
2、类型一 线段和最小值1. 如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_cm 第1题图 第2题图 第3题图 第4题图2. 如图,点P是AOB内一定点,点M、N分别在边OA、OB上运动,若AOB=45,OP=3,则PMN周长的最小值为 . 3. 如图,正方形ABCD的边长是4,DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为 .4. 如图,在菱形ABCD中,AB=2,A=120,点P、Q、K分别为线段BC、CD、BD上的任意一
3、点,则PK+QK的最小值为 .5. 如图,当四边形PABN的周长最小时,a = 6. 如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. 若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,则点F的坐标为 . 第5题图 第6题图 第7题图变式加深:7、如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A. B. C. D. 第8题图 第9题图 第10题图8、如图,MON=90,矩形ABCD的顶点A、B分别在边OM,ON上,当B
4、在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为 9、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG与点H。若正方形的边长为2,则线段DH长度的最小值是 10、如图,点P在第一象限,ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是_.若将ABP中边PA的长度改为,另两边长度不变,则点P到原点的最大距离变为_类型二 线段差最大值1、如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8
5、,B到MN的距离BD=5,CD=4,P在直线MN上运动,则的最大值等于 第1题图 第2题图 第3题图 2、点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所 示若P是x轴上使得的值最大的点,Q是y轴上使得QA+QB的值最小的点,则 3、如图所示,已知A(1/2,y1),B(2,y2)为反比例函数y=1/x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是 4、如下图,一次函数y1=kx-2与反比例函数y2=m/x(m 0)的图象交于A,B两点,其中点A的坐标为(-6,2)(1)求m,k的值;(2)点P为y轴上的一个动点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 数学 中考 专题 线段 问题
限制150内