《中考数学二次函数复习苏科版.docx》由会员分享,可在线阅读,更多相关《中考数学二次函数复习苏科版.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数一、本章学习回顾1 知识结构实际问题二次函数的图象二次函数二次函数的性质二次函数的应用2学习要点(1)能结合实例说出二次函数的意义。(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。(3)掌握二次函数的平移规律。(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。(5)会用待定系数法灵活求出二次函数关系式。(6)熟悉二次函数与一元二次方程及方程组的关系。(7)会用二次函数的有关知识解决实际生活中的问题。3需要注意的问题在学习二次函数时,要注重数形结合的思想方法。在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方
2、程与方程组时,都体现了数形结合的思想。二、本章复习题A组一、填空题1已知函数,当 时,它是二次函数;当 时,抛物线的开口向上;当 时,抛物线上所有点的纵坐标为非正数2抛物线经过点(3,-1),则抛物线的函数关系式为 3抛物线,开口向下,且经过原点,则 4点A(-2,a)是抛物线上的一点,则 ; A点关于原点的对称点B是 ;A点关于y轴的对称点C是 ;其中点B、点C在抛物线上的是 5若抛物线的顶点在x轴上,则c的值是 6把函数的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 7已知二次函数的最小值为1,那么m的值等于 8二次函数的图象在x轴上截得的两交点之间的距离为 9抛物线
3、的对称轴是 ,根据图象可知,当x 时,y随x的增大而减小10已知抛物线的顶点在原点,对称轴是y轴,且经过点(-2,-2),则抛物线的函数关系式为 11若二次函数的图象经过点(2,0)和点(0,1),则函数关系式为 12抛物线的开口方向向 ,顶点坐标是 ,对称轴是 ,与x轴的交点坐标是 ,与y轴的交点坐标是 ,当 时,y有最 值是 13抛物线与x轴的两个交点坐标分别为,若,那么c值为 ,抛物线的对称轴为 14已知函数当m 时,函数的图象是直线;当m 时,函数的图象是抛物线;当m 时,函数的图象是开口向上,且经过原点的抛物线15一条抛物线开口向下,并且与x轴的交点一个在点A(1,0)的左边,一个在
4、点A(1,0)的右边,而与y轴的交点在x轴下方,写出这条抛物线的函数关系式 二、选择题16下列函数中,是二次函数的有 ( ) A、1个 B、2个 C、3个 D、4个17若二次函数的图象经过原点,则m的值必为 ( )A、-1或3 B、-1 C、3 D、无法确定18二次函数的图象与x轴 ( )A、没有交点 B、只有一个交点 C、只有两个交点 D、至少有一个交点19二次函数有( ) A、最大值1 B、最大值2 C、最小值1 D、最小值220在同一坐标系中,作函数,的图象,它们的共同特点是 (D )A、都是关于x轴对称,抛物线开口向上B、都是关于y轴对称,抛物线开口向下C、都是关于原点对称,抛物线的顶
5、点都是原点D、都是关于y轴对称,抛物线的顶点都是原点21已知二次函数的图象和x轴有交点,则k的取值范围是 ( )A、 B、且C、 D、且22二次函数的图象可由的图象 ( )A向左平移1个单位,再向下平移2个单位得到B向左平移1个单位,再向上平移2个单位得到C向右平移1个单位,再向下平移2个单位得到D向右平移1个单位,再向上平移2个单位得到23某旅社有100张床位,每床每晚收费10元时,客床可全部租出若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出以每次提高2元的这种方法变化下去为了投资少而获利大,每床每晚应提高 ( )A、4元或6元 B、4元 C、
6、6元 D、8元24若抛物线的所有点都在x轴下方,则必有 ( )A、 B、C、 D、 25抛物线的顶点关于原点对称的点的坐标是 ( )A、(-1,3) B、(-1,-3) C、(1,3) D、(1,-3)三、解答题26已知二次函数(1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;(2)求抛物线与x轴、y轴的交点;(3)作出函数图象的草图;(4)观察图象,x为何值时,y0;x为何值时, 0;x为何值时,y0?27已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式28已知二次函数,当2时,y有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式29已知二次函
7、数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2(1)求二次函数的函数关系式;(2)设此二次函数图象的顶点为P,求的面积30利用函数的图象,求下列方程(组)的解:(1); (2)31某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:162-3x(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?B组一、选择题32若所求的二次函数的图象与抛物线有相同的顶点,并且在对称轴的左侧,y随x的增大而增大;在对称
8、轴的右侧,y随x的增大而减小,则所求二次函数的函数关系式为 ( D )A、 B、C、 D、33二次函数,当1时,函数y有最大值,设,(是这个函数图象上的两点,且,则 ( )A、 B、C、 D、34若关于x的不等式组无解,则二次函数的图象与x轴 ( )A、没有交点 B、相交于两点C、相交于一点 D、相交于一点或没有交点二、解答题35若抛物线的顶点在x轴的下方,求m的值36把抛物线的图象向左平移3个单位,再向下平移2个单位,所得图象的解析式是,求m、n37如图,已知抛物线,与x轴交于A、B,且点A在x轴正半轴上,点B在x轴负半轴上,(1)求m的值;(2)求抛物线关系式,并写出对称轴和顶点C的坐标3
9、8有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3请写出满足上述全部特点的一个二次函数的关系式C组解答题39如图,已知二次函数,当3时,有最大值4(1)求m、n的值;(2)设这个二次函数的图象与x轴的交点是A、B,求A、B点的坐标; (3)当y0时,求x的取值范围;(4)有一圆经过A、B,且与y轴的正半轴相切于点C,求C点坐标40阅读下面的文字后,解答问题 有这样一道题目:“已知二次函数2的图象经过点A(0) 、B(12)、 、 ,求证:这个二次函数图象的对称轴是直线2”题目中的矩形框部分是一段被墨水污染了无法辨认的文字(1)根据现有信息,你能否求出题目中二次函数的解析式? 若能,写出求解过程,若不能请说明理由;(2)请你根据已有信息,在原题中的矩形框内,填上一个适当的条件,把原题补充完整 41已知开口向下的抛物线与x轴交于两点A(,0)、B(,0),其中,P为顶点,90,若、是方程的两个根,且(1)求A、B两点的坐标;(2)求抛物线的函数关系式 42已知二次函数的图象如图所示(1)当m-4时,说明这个二次函数的图象与x轴必有两个交点;(2)求m的取值范围;(3)在(2)的情况下,若,求C点坐标;(4)求A、B两点间的距离;(5)求的面积S
限制150内