多边形及其内角和A.pdf
《多边形及其内角和A.pdf》由会员分享,可在线阅读,更多相关《多边形及其内角和A.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/4 7.3 多边形及其内角和1下面哪一个度数是某个多边形的内角和()A270 B 630 C1920 D720知识点:多边形的内角和知识点的描述:n 边形的内角和是(n-2)180,多边形的内角和一定是180的整数倍答案:D 详细解答:270、630、1920、720中只有D720是 180的整数倍,所以选D.2.一个多边形的外角中,钝角的个数不可能是()A.1个 B.2个 C.3个 D.4个知识点:多边形的外角和知识点的描述:多边形的外角和360,是一个不变的常数,与边数无关,也就是说不管是几边形,他的外角和总是360答案:D 详细解答:多边形的外角和360,因此一个多边形的外角中,钝角
2、的个数不可能超过3个,如果是4 个钝角,那么外角和大于360,这是不可能的。所以选D。3 若一个正多边形的每一个内角都等于120,则它是()A正方形 B 正五边形 C 正六边形 D正八边形知识点:正多边形的内角知识点的描述:正多边形的每个内角都相等,正多边形的内角和也是(n-2)180.答案:C 详细解答:若一个正多边形的每一个内角都等于120,那么他的每一个外角都等于60,由于多边形的外角和360,所以边数就是360 60=6.另一种解法:假设正n 边形,(n-2)180=n120,解得n=6。4三角形一个外角小于与它相邻的内角,这个三角形是()A直角三角形 B锐角三角形 C钝角三角形 D属
3、于哪一类不能确定知识点:三角形的外角和与他相邻的内角的关系.知识点的描述:三角形的外角和与他相邻的内角互补.答案:C 详细解答:三角形的外角和与他相邻的内角互补,又三角形一个外角小于与它相邻的内角,那2/4 么外角是锐角而内角是钝角,所以这个三角形是钝角三角形.5一个多边形的内角和是三角形外角和的3 倍,则这个多边形为()A五边形 B 六边形 C八边形 D九边形知识点:多边形的内角和与多边形的外角和.知识点的描述:多边形的内角和为(n-2)180,多边形的外角和为360.答案:C 详细解答:多边形的内角和是三角形外角和的3 倍,则(n-2)180=3360,解得 n=8.6.若从一个多边形的一
4、个顶点出发,最多可以引10 条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形知识点:多边形的对角线总数知识点的描述:n 边形的每一个顶点都有(n-3)个和他不相邻的顶点,从 n 边形的每一个顶点可以引出(n-3)条对角线,所以 n边形共有32n n条对角线答案:A 详细解答:因为从 n 边形的每一个顶点可以引出(n-3)条对角线,所以 n-3=10,得 n=13.7若三角形三个外角的比为4:2:3,则这个三角形是()A、锐角三角形B、直角三角形C、等腰三角形D、钝角三角形知识点:三角形的内角和、三角形的外角和知识点的描述:三角形的内角和180,三角形外角和360答案:D
5、 三角形三个外角的比为4:2:3,所以假设三角形的三个外角分别为4k、2k、3k,又因为三角形的外角和360,所以4k+2k+3k=360,解得k=40,所以最小外角是80,那么最大内角100,因此这个三角形是钝角三角形.8.一个多边形除一个内角外,其余各个内角的和为20300,则这个多边形的边数()A.12 B.13 C.14 D.15 .知识点:多边形的内角和知识点的描述:n 边形的内角和是(n-2)180,多边形的内角和一定是180的整数倍答案:C 详细解答:设边数为n,这个内角为x,则 00 x1800文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8
6、文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:C
7、M6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4
8、K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9
9、HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R
10、10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3
11、 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9
12、X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z83/4 根据题意,得(n-2)1800=x+20300(n-2)1800是 1800的倍数x+20300必是 1800的倍数203001800=1150 x=1800-500=1300(n-2)1800=180011+1800 n-2=12 n=14
13、这个多边形的边数为14.点拨:本题在利用多边形的内角和计算公式得到方程后,又借助数的整除,通过讨论得这个内角的度数,这是解决有关多边形的内角和与外角和问题的一种常用的方法.9.一个五边形的五个外角的度数比是12345,这个五边形的五个内角的度数比().A.123 45B.5 432 1 C.131197 5D.11 9753 知识点:多边形的外角和相邻的内角的关系,多边形的外角和。知识点的描述:多边形的外角和相邻的内角互补;多边形的外角和360。答案:C 详细解答:五边形的五个外角的度数比是12345,假设这五个外角的度数分别是k、2k、3k、4k、5k,因为外角和为360,所以k+2k+3k
14、+4k+5k=360,求得k=24.五个外角的度数分别是24、48、72、96、120,那么与它们相邻的五个内角的度数分别是156、132、108、84、60,所以五个内角的度数比为156132 108 84 60=1311975 10.已知 ABC的边 BA、BC分别与 DEF的边 ED、EF垂直,垂足分别是M、N,且 ABC=700,则 DEF的度数().A.700 B.1100 C.700或 1100 D.1400知识点:多边形内角和定理的综合应用知识点的描述:只要善于从复杂的图形中找到基本图形,利用三角形或多边形的内角和定理就可以解决问题答案:C 点拨:本题已知了ABC和 DEF的边的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多边形 及其 内角
限制150内