2022年二次函数复习检测及应用2 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年二次函数复习检测及应用2 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数复习检测及应用2 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习好资料欢迎下载二次函数(复习)一、二次函数 y=ax2的图像和性质1.函数 y=2x2的图像是 _,它开口 _,顶点为 _,对称轴为 _,当x_时,y 随 x 增大而增大,当x_时,y 随 x 增大而减少;当 x=_时,y 有最_值_.2.抛物线 y=(m-2)xm+1开口 _,它有最 _点.3.一个抛物线型涵洞的截面如图所示,现测得水面宽AB1.6m,涵洞顶点到水面的距离为2.4m,在图中的直角坐标系中,涵洞所在的抛物线的表达式为_.二、y=a(x+m)2+n 的图像和性质5.已知抛物线y=-0.5(x+2)2+3(1)该抛物线可以看作是由哪个抛物线如何平移得到的?(2)该抛物线抛物线的
2、开口_,顶点坐标为 _,对称轴为 _.(3)画出该抛物线的草图,结合图像,说明该抛物线的增减性和最值.6.二次函数的最高点坐标为(3,-1),其图像开口 _,当 x_时,y 有最 _值_.7.抛物线 y=3x2,y=-3x2,y=0.5x2+3 的共有的性质是()A 开口向上B 顶点坐标是(0,0)C 对称轴是y 轴D 在对称轴的右边,y 随 x 增大而增大三、抛物线 y=ax2+bx+c 的图像和性质8.已知二次函数(1)用配方法求出其顶点坐标和对称轴(2)在右图的坐标系中用描点法作出其图像(3)根据图像回答下列问题:说明该函数的增减性及最值该函数图像与x 轴和 y 轴的交点分别是什么?x
3、取何值时,y0;x 取何值时,y0,x 的取值范围是_ 22.y=ax2+bx+c 与 y=ax+b 在同一坐标系中的大致图像是()23.根据下列表格中二次函数y=ax2+bx+c 的自变量x 与函数.桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过、三点的抛物线,以桥面的水平线为轴,经过抛物线的顶点与轴垂直的直线为轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为米(图中用线段、等表示桥柱)米,米()求经过、三点的抛物线的解析式。()求柱子的高度。y=-12x2+x-1学习好资料欢迎下载二次函数(检测)1.函 数的自变量x 的取值
4、范围是 _ 2.给一些不同的实数k,得到不同的抛物线y=x2+k,当 k 取-1,2,-3 时,关于这些抛物线有下列判断:开口方向相同;对称轴相同;形状都相同;都有最低点.其中判断正确的个数有()A 1 个B 2 个C 3 个D 4 个3.已知函数4212xxy,当函数值随x 的增大而减小时,则x 的取值范围是()Ax1 Cx-2 D-2x4 4.抛物线222kxxy与x轴交点的个数为()A、0 B、1 C、2 D、以上都不对5.抛物线23yx向右平移 1 个单位,再向下平移2 个单位,所得到的抛物线是()23(1)2yx23(1)2yxC 23(1)2yxD 23(1)2yx6.对于抛物线2
5、1(5)33yx,下列说法正确的是()A开口向下,顶点坐标(5 3),B开口向上,顶点坐标(5 3),C开口向下,顶点坐标(5 3),D开口向上,顶点坐标(5 3),7.已知二次函数的图象开口向上,且顶点在 y 轴的负半轴上,请你写出一个满足条件的二次函数的表达式_ 8.若一抛物线形状由y 3x2 2 平移而来,顶点坐标是(4,1),则其解析式是_.9.下图是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m如图,建立平面直角坐标系,则抛物线的关系式是()A22yxB22yxC212yxD 212yx10.已知二次函数y=ax2+bx+c 的图像如图所示
6、,则下列条件正确的是()Aac0 B.b2 4ac0 C.b 0 D.a0、b0、c0 学习好资料欢迎下载yx12345-1-2123-1-2O11.如图,抛物线 y=ax2+bx+c(a0)的图象与x 轴的一个交点是(-2,0),顶点是(1,3),下列说法不正确的是().抛物线的对称轴是直线x=1.抛物线的开口向下.抛物线与x 轴的另一个交点为(2,0).当 x=1 时,y 有最大值是3 12.抛物线的对称轴为直线x=-2,经过点(1,4)和点(5,0)求该抛物线的解析式。13.抛物线y=x2-(m 4)x+2 m-3当 m 取何值时,(1)抛物线的顶点在x 轴上?(2)抛物线的顶点在y 轴
7、上?(3)抛物线经过原点?14.cbxxy2的部分图象如图所示.(1)求 b、c 的值;(2)求 y 的最大值;(3)求该抛物线与x 轴的另一个交点.(4)写出当0y时,x 的取值范围15.橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处安上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知 OP 3 米,喷出的水流的最高点A距水平面的高度是4 米,离柱子OP的距离为 1 米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?学习好资料欢迎下载二次函数的应用(一)1.橘子
8、洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处上喷头,由 P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知 OP 3 米,喷出的水流的最高点A距水平面的高度是4 米,离柱子 OP的距离为1 米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?2.菜塑料大棚的截面如图所示,曲线部分近似看成抛物线,现测得 AB=6 米,最高点 D 到地面 AB 的距离高 DO=2.5 米,点 O 到墙 BC 的距离 OB=1 米,借助图中的直角坐标系回答下列问题:(1)写出 A、B 坐标;(2)求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二次函数复习检测及应用2 2022 二次 函数 复习 检测 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内