《人教版高中数学A版必修三第二章统计导学案.docx》由会员分享,可在线阅读,更多相关《人教版高中数学A版必修三第二章统计导学案.docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章统计2.1随机抽样2.1.1简单随机抽样【学习目标】1理解简单随机抽样的概念2掌握常见的两种简单随机抽样的方法3能合理地从实际问题的个体中抽取样本【学习重点】真确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤【学习难点】能灵活应用相关知识从总体中抽取样本【学习过程】 一、自主学习(阅读课本第5458页,完成下列问题)1阅读课本第55页一个著名的案例,你认为预测结果出错的原因是什么?由此可以总结出什么教训?2假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本那么,应当怎样获取样本呢?3一般地,我
2、们把所考察的对象的全体叫_,组成总体的每一个研究对象叫_,从总体中抽取的一部分个体叫_,样本中个体的数目叫_3简单随机抽样的定义:设一个总体含有个个体,从中_地抽取个个体作为样本(_),如果每次抽取时总体内的_,这种抽样方法叫简单随机抽样说明:简单随机抽样的特点:(1)被抽取样本的总体中的个体数是_的;(“有限”或“无限”)(2)抽取的样本个体数_总体的个体数;(3)抽取的样本是从总体中逐个抽取的;(4)简单随机抽样是一种_抽样;(“放回”或“不放回”)(5) 总体中每个个体被抽到的可能性_;(6)每个个体被抽到的可能性均为4最常用的简单随机抽样的方法有_法、_法二、合作探究例1:某车间工人加
3、工一种零件共100件,为了了解这种零件的质量,要从中抽取10件零件在同一条件下测量,如何采用抽签法获取样本?例2:我们要考察某公司生产的一批牛奶的质量是否达标,现从1000袋牛奶中抽取100袋进行检验,如何利用随机数表法获取样本?例3:下列抽样的方式属于简单随机抽样的有_(填写序号)(1)从无限多个个体中抽取50个个体作为样本(2)从1000个个体中一次性抽取50个个体作为样本(3)将1000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把
4、它放回箱子(5)福利彩票用摇奖机摇奖三、达标检测1为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( )A总体B个体C总体的一个样本D样本容量对总数为的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则为 A150 B200 C100 D1203对于简单随机抽样,有以下几种说法,其中不正确的是( )A要求总体的个数有限B从总体中逐个抽取C这是一种不放回抽样D每个个体被抽到的机会不一样,及抽取先后有关4用随机数表法进行抽样有以下几个步骤:将总体中的个体编号 获取样本号码 选定开始的数字,这些步骤的先后顺序应为( )ABCD5关于简
5、单随机抽样,下列说法不正确的是( )A当总体中个体数不多时,可以采用简单随机抽样B采用简单随机抽样不会产生任何代表性差的样本C用随机数表法抽取样本时,读数的方向可以向右,也可以向左、向下、向上等等D抽鉴法抽取样本对每个个体说都是公平的6一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是_四、学习小结1简单随机抽样的定义2简单随机抽样的特点3最常用的两种简单随机抽样的方法步骤及各自的优点和缺点2.1.系统抽样【学习目标】1理解和掌握系统抽样2会用系统抽样从总体中抽取样本 3正确理解系统抽样及简单随机抽样的区别及使用范围【学习重点】实施系统
6、抽样的步骤【学习难点】当不是整数,如何实施系统抽样【学习过程】 一、自主学习(阅读课本第58页,回答下列问题)1结合课本58页的探究归纳系统抽样的步骤: (1)_;(2)_;(3)_;(4)_2系统抽样的定义:在抽样中,当总体中个体数目_时,可将总体分成均衡的几个部分,然后按照预先制订的规则,从每一个部分中抽取_个个体,得到所需要的样本,这样的抽样方法叫系统抽样说明:系统抽样的特点:(1)当总体总量_时,常采用系统抽样;(2)将总体分成的各个部分必须是_的,间隔是_的;(3)规则是_制订的;(4)第一部分的抽样采用_抽样;(5)总体中每个个体被抽到的可能性_二、合作探究例1:从已编号为150的
7、50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A5,10,15,20,25 B3,13,23,33,43C1,2,3,4,5 D2,4,6,16,32 例2:为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本三、达标检测1从学号为050的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是( )A1,2,3,4,5 B5,15,25,35,45C2, 12, 22, 32, 42 D9,19,29,39,492采用系统抽样
8、从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为( )A B C D不相等3一个年级有12个班,每个班有50名学生,随机编号为150,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( )A分层抽样 B抽签法 C随机数表法D系统抽样法 4某班的78名同学已编号1,2,3,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( )A简单随机抽样法 B系统抽样法C分层抽样法D抽签法5为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间
9、隔k为 ( )A40B30C20D126某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是_ 7若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除_个个体,编号后应均分为_段,每段有_个个体8某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?四、学习小结1系统抽样的定义2系统抽样的特点3简单随机抽样及系统抽样的区别及联系2.1.3分层抽样【学习目标】1正确理解分层抽样的概念2会用分层抽样
10、法从总体中抽取样本3理解分层抽样及简单随机抽样和系统抽样的区别及联系【学习重点】分层抽样的概念及其步骤【学习难点】确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法【学习过程】 一、自主学习(阅读课本第6061页,完成下列问题)1假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本,能使样本更具有代表性?2分层抽样的定义:在抽样时,若总体由存在_的几部分组成,则按这种差异将总体分成互不交叉的_,然后按照_,从各层中_地抽取一定数量的个体,将各层取
11、出的个体合在一起作为样本,这种抽样的方法叫分层抽样说明:分层抽样的特点:(1)适用于有_的总体;(2)在各层中_抽样;(3)各层中抽样采用_法或_法;(4)是等可能抽样,每个个体被抽到的可能性都是_二、合作探究例1:某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测若采用分层抽样的方法抽取样本,则抽取的植物油类及果蔬类食品种数之和是( )A4 B5 C6 D7 例2:一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工及身体状况有关
12、的某项指标,要从中抽取100名职工作为样本,职工年龄及这项指标有关,应该怎样抽取?三、达标检测1某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( ) 简单随机抽样 系统抽样 分层抽样A B C D2我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( )A45,75,15 B 45,45,45 C30,90,15 D 45,60,30 3某单位
13、有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是 ( ) A 6,12,18 B 7,11,19 C 6,13,17 D 7,12,17 4一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的频率为( )A B C D5某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家为了掌握各商店的营业情况,要从中抽取一个容量为20的样本若采用分层抽样的方法,抽
14、取的中型商店数是_6某校高一、高二、高三,三个年级的学生人数分别为1500人,1200人和1000人,现采用按年级分层抽样法了解学生的视力状况,已知在高一年级抽查了75人,则这次调查高三年级共抽查了_人7某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2 :3 :5现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量_8某公司生产三种型号的轿车,产量分别是1200辆、6000辆和2000辆,为检验公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取_、_、_9某高级中学有学生270人,其中一年级108人,二、三年级各81人,
15、现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270;使用系统抽样时,将学生统一随机编号1,2,270,并将整个编号依次分为10段如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270关于上述样本的下列结论中,正确的是(
16、)A都不能为系统抽样 B都不能为分层抽样C都可能为系统抽样 D都可能为分层抽样四、学习小结三种抽样方法的区别及联系类别特点联系适用范围共同点简单随机抽样从总体中逐个抽取总体中个体数目较少在抽样过程中每个个体被抽到的可能性相等系统抽样将总体均分成几部分,按预先制订的规则分别在各部分中抽取在起始部分采用简单随机抽样总体中个体数目较多分层抽样将总体分成几层,在各层按比例抽取每一层采用简单随机抽样或系统抽样总体由差异明显的几部分组成2.2用样本估计总体2.2.1用样本的频率分布估计总体分布【学习目标】1理解用样本的频率分布估计总体分布的方法2会列频率分布表、画频率分布直方图、频率分布折线图、茎叶图3能
17、利用图形解决实际问题【学习重点】会列频率分布表,画频率分布直方图、频率折线图和茎叶图【学习难点】对总体分布概念的理解,能通过样本的频率分布估计总体的分布【学习过程】一、自主学习(阅读课本第6570页,完成下列问题)1通常我们对总体作出估计分成两种,一种是_,另一种是_2频率分布:指一个样本数据在各个小范围内所占比例的_一般用_反映样本的频率分布3画频率分布直方图步骤:(1)_(2)_(3)_(4)_(5)_4频率分布直方图的特征:(1) 在频率分布直方图中纵轴表示_,每个小长方形面积=_,各个小长方形面积之和=_(2)原始数据_在频率分布直方图中表示出来(“能”或“不能”)(3) 从频率分布直
18、方图可清楚地看出数据分布的_(4)频率分布直方图有“好”及“坏”之分5频率分布折线图:连接频率分布直方图中各个小长方形上端的_,就得到频率分布折线图6总体密度曲线:在样本频率分布直方图中,当样本容量逐渐增加,相应的_会越来越接近一条光滑曲线,统计中称这条光滑曲线为总体密度曲线,它能够更加精细地反映出总体在各个范围内取值的_用样本的频率分布折线图_(“能”或“不能”) 得到准确的总体密度曲线7茎叶图:茎叶图也是用来表示数据的一种图,茎是指_的一列数,叶是从茎的旁边生长出来的数二、合作探究例1:为了了解某中学300名17岁女生的身体发育情况,从中随机抽取了30名女生,对其身高进行了测量,结果如下:
19、(单位:cm)154 159 166 169 159 156 166 162 158 156 157 151 157 161 163158 153 158 164 158 162 159 154 165 166 157 151 146 151 158 (1)列出样本的频率分布表;绘出频率分布直方图(2)估计该校17岁女生身高在160cm(包括160cm)以上的约有多少人?例2:下面一组数据是某工厂甲乙两车间各15名工人某日加工零件的个数,设计茎叶图表示这组数据,并由图说明两个车间此日生产情况甲:134 112 117 126 128 124 122 116 113 107 116 132 12
20、7 128 126 乙:121 120 118 108 110 133 130 124 116 117 123 122 120 112 112三、达标检测1下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据下图可知( )A甲运动员的成绩好于乙运动员B乙运动员的成绩好于甲运动员C甲、乙两名运动员的成绩没有明显的差异 D甲运动员的最低得分为0分2有一个容量为45的样本数据,分组后各组的频数如下:(125,155,3;(155,185, 8;(185,215,9;(215,245,11;(245,275,10;(275,305,4由此估计,不大于275的数据约为总体的( )A91% B92% C9
21、5% D30%3一个容量为20的样本数据,数据的分组及各组的频数如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4;(60,70),2则样本在区间(10,50)上的频率为( )A0.5 B0.7 C0.25 D0.054一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如下图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭_万盒 快餐公司个数情况图 快餐公司盒饭年销售量的平均数情况图四、学习小结1频率分布直方图步骤2茎叶图
22、画法3用样本估计总体2.2.2用样本的数字特征估计总体的数字特征【学习目标】1会求样本众数、中位数、平均数、标准差、方差2理解用样本的样本的数字特征来估计总体数字特征的方法3会应用相关知识解决简单的统计实际问题【学习重点】众数、中位数、平均数、标准差、方差的意义及计算方法【学习难点】能应用相关知识解决简单的实际问题【学习过程】一、自主学习(阅读课本第7178页,完成下列问题)1众数:一组数据中出现_最多的数称为这组数据的众数,一组数据中的众数可能不止_个,也可能没有众数反映了该组数据的_趋势在频率分布直方图中,最高矩形的_就是数据的众数2中位数:一组数据按由小到大(或由大到小)的顺序排成一列,
23、处于_位置的数,称为这组数据的中位数一组数据中的中位数是唯一的,反映了该组数据的_趋势在频率分布直方图中,中位数左边和右边的直方图面积_说明:按顺序排列后,若样本容量为奇数,则中位数为最中间的_数;若样本容量为偶数,则中位数为最中间两个数的_3平均数:_,平均数代表该组数据的_4标准差:_,标准差反映了该组数据的_,标准差越大,数据的离散程度_,标准差越小,数据的离散程度_5方差:_同标准差一样,方差也是用来测量一组数据的_的特征数二、合作探究例1:某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些甲班:112,86,10
24、6,84,100,105,98,102,94,107,87,112,94,94,99,90,120,98,95,119,108,100,96,115,111,104,95,108,111,105,104,107,119,107,93,102,98,112,112,99,92,102,93,84,94,94,100,90,84,114乙班:116,95,109,96,106,98,108,99,110,103,94,98,105,101,115,104,112,101,113,96,108,100,110,98,107,87,108,106,103,97,107,106,111,121,97,1
25、07,114,122,101,107107,111,114,106,104,104,95,111,111,110例2:下面是某校学生日睡眠时间抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间 睡眠时间人数频率6,6.5)50.056.5,7)170.177,7.5)330.337.5,8)370.378,8.5)60.068.5,9)20.02合计1001例3:在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下甲运动员:7,8,7,9,5,4,9,10,7,4; 乙运动员:9,5,7,8,7,6,8,6,7,7观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?如果你
26、是教练,选哪位选手去参加正式比赛?三、达标检测1若M个数的平均数是X,N个数的平均数是Y,则这M+N个数的平均数是_;2如果两组数x1,x2,xn和y1,y2,yn的样本平均数分别是x和y,那么一组数x1+y1,x2+y2,xn+yn的平均数是_3在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为_4在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适?四
27、、学习小结众数、中位数、平均数、标准差、方差的意义 2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关【学习目标】1理解两个变量间的相关关系的概念2会作散点图,并利用散点图判断两个变量之间是否具有相关关系3会求回归直线方程【学习重点】直观认识两个变量之间的相关关系,求回归直线方程【学习难点】两个变量之间的相关关系的认识,对线性回归的认识【学习过程】一、自主学习(阅读课本第8491页,完成下列问题)1 相关关系的概念:两个变量之间的关系分两类:确定性的函数关系,例如如匀速直线运动中时间及路程之间的关系带有不确定性的变量间的相关关系,例如课本第84页问题1、2、3(自变
28、量取值一定时,因变量的取值带有一定的_的两个变量之间的关系)2散点图:将样本中个数据点描在平面直角坐标系中得到的图形叫做散点图3正相关及负相关:散点图中的点散布在从_到_的区域,对于这种相关关系叫做正相关;散点图中的点散布在从_到_的区域,对于这种相关关系叫做负相关4回归直线:如果散点图中点的分布从整体上看大致在_附近,我们就称这两个变量之间具有_关系,这条直线叫做回归直线5回归方程:,其中 二、合作探究例1:下列关系中,带有随机性相关关系的是_正方形的边长及面积之间的关系水稻产量及施肥量之间的关系人的身高及年龄之间的关系降雪量及交通事故的发生率之间的关系例2:有一个同学家开了一个小卖部,他为
29、了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数及当天气温的对比表:摄氏温度/-504712151923273136热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温及热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2 ,预测这天卖出的热饮杯数三、达标检测1三点(3,10),(7,20),(11,24)的线性回归方程是( )A=5.75-1.75x B=1.75+5.75xC=1.75-5.75x D=5.75+1.75x2车间为了规定工时定额,需要确定加工零件所花费的时间,进行了10次试验,收集数据
30、如下:零件数x(个)102030405060708090100加工时间y(min)626875818995102108115122画出散点图;关于加工零件的个数及加工时间,你能得出什么结论?3下表为某地近几年机动车辆数及交通事故数的统计资料机动车辆数x千台95110112120129135150180交通事故数y千件6.27.57.78.58.79.810.213(1)请判断机动车辆数及交通事故数之间是否有线性相关关系,如果不具有线性相关关系,说明理由;(2)如果具有线性相关关系,求出线性回归方程四、学习小结1散点图的画法2如何判断两个变量是否线性相关?3回归直线方程及作用第二章 统计测试题一
31、、选择题 (每小题4分,共48分)1某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是 A1000名学生是总体B每个学生是个体 C100名学生的成绩是一个个体D样本的容量是100 对总数为的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则为 A 150 B200 C100 D1203某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是 ( )A简单随机抽样 B系统抽样 C分层抽样 D其它抽样方法4某公司在甲、乙、丙、
32、丁四个地区分别有150个、120个、180个、150个销售点公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为,则完成、这两项调查宜采用的抽样方法依次是 ( ) A分层抽样法,系统抽样法 B分层抽样法,简单随机抽样法 C系统抽样法,分层抽样法 D简单随机抽样法,分层抽样法5我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 A45,75,15 B 45
33、,45,45 C30,90,15 D 45,60,30 ( ) 6频率分布直方图中,小长方形的面积等于 ( ) A相应各组的频数 B相应各组的频率 C组数 D组距7从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为04,则这样的样本容量是 ( ) A 20人 B 40人 C 70人 D 80人8某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量是=415,方差是=794,=958,那么这两个水稻品种中产量比较稳定的是 ( )A甲 B乙 C甲、乙一样稳定 D无法确定9一个容量为35的样本数据,分组后,组距及
34、频数如下:5个;:个;:7个;:5个;:4个;:2个则样本在区间上的频率为 ( ) A20% B69% C31% D27%10观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在的频率为 ( ) A 0.001 B 0.1 C 0.2 D 0.311下列说法中,正确的是( )A数据的众数是B一组数据的标准差是这组数据的方差的平方C数据的标准差是数据的标准差的一半D频率分布直方图中各小长方形的面积等于相应各组的频数12对于给定的两个变量的统计数据,下列说法正确的是( )A都可以分析出两个变量的关系 B都可以用一条直线近似地表示两者的关系C都可以作出散点图 D都可以用确定的表达式表示两者
35、的关系二、填空题 (每小题5分,共30分)11从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_12 某工厂生产A、B、C三种不同型号的产品,产品数量这比依次为1600,1600,4800现用分层抽样的方法抽出一个容量为N的样本,样本中A种型号的产品共有16件,那么此样本的容量N=_件13 若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除_个个体,编号后应均分为_段,每段有_个个体14某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是_15管理人员从一池塘内捞出30条鱼,做上标记后放回池塘10天后,又从池塘内捞出50条鱼,其中有标记的有2条根据以上数据可以估计该池塘内共有_条鱼4060705080时速0频率0.40.30.20.116200辆汽车通过某一段公路时的时速频率分布直方图如图所示,则时速在的汽车大约有_辆三、解答题 (每小题10分,共42分)17(10分)一个单位的职工有500人,其中不到35岁的有125人,3549岁的有280人,50岁以上的有95人为了了
限制150内