2022年中考冲刺:代几综合问题(基础).doc
《2022年中考冲刺:代几综合问题(基础).doc》由会员分享,可在线阅读,更多相关《2022年中考冲刺:代几综合问题(基础).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考冲刺:代几综合问题(基础)中考冲刺:代几综合问题(基础) 一、选择题 1.(2020河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰RtABC,使BAC=90,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是() A B CD 2. 如图,在半径为1的O中,直径AB把O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CDAB,垂足为E,OCD的平分线交O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( ) 二、填空题 3. 将抛物线y12x2向右平移2个单位,得到抛物线的图
2、象如图所示,P是抛物线y2对称轴上的一个动点,直线xt平行于y轴,分别与直线yx、抛物线y2交于点A、B若ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t_ 4. (2020宝山区一模)如图,D为直角ABC的斜边AB上一点,DEAB交AC于E,如果AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC=8,tanA=,那么CF:DF=_ 三、解答题 5. 一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点依次类推. (1)试写出第n层所对应的点数; (2)试写出n层六边形点阵的总点数; (3)如果一个六边形点阵共有169
3、个点,那么它一共有几层? 6. 如图,RtABC中,B=90,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止连接PQ设动点运动时间为x秒 (1)用含x的代数式表示BQ、PB的长度; (2)当x为何值时,PBQ为等腰三角形; (3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由 7. 阅读理解:对于任意正实数a、b, 结论:在a+b2(a、b均为正实数)中,若ab为定值p,则a+b2,只有当a
4、=b时,a+b有最小值2 根据上述内容,回答下列问题: (1)若m0,只有当m=_时,有最小值,最小值为_; (2)探究应用:已知A(-3,0)、B(0,-4),点P为双曲线()上的任一点,过点P作PC轴于点C,PD轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状 8. (深圳期末)如图,平面直角坐标系中,直线AB:y=x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点 (1)直接写出A、B的坐标;A_,B_; (2)是否存在点P,使得AOP的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由 (3)是否存在点P使得AB
5、P是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由 9.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,) (1)求抛物线的解析式; (2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标; (3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动设S=PQ2(cm2) 求出S与运动时间t之间的函数关系式,并写出t的取值范围; 当S=时,在抛物线上
6、存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形, 求出点R的坐标 10已知:抛物线yx22xm-2交y轴于点A(0,2m-7)与直线yx交于点B、C(B在右、C在左) (1)求抛物线的解析式; (2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由; (3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若PMQ与抛物线yx22xm-2有公共点,求t的取值范围 11. 在平面直角坐标系中
7、,抛物线经过A(3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BDBC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动. (1)求该抛物线的解析式; (2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值; (3)该抛物线的对称轴上是否存在一点M,使MQMA的值最小?若存在,求出点M的坐标;若不存在,请说明理由. 答案与解析 【答案与解析】一、选择题 1【答案】A. 【解析】作ADx轴,作CDAD于点D,若右图所示, 由已知可得,OB=x,OA=1,AOB=90,BAC=90,AB=A
8、C,点C的纵坐标是y, ADx轴,DAO+AOD=180,DAO=90, OAB+BAD=BAD+DAC=90,OAB=DAC, 在OAB和DAC中, , OABDAC(AAS), OB=CD,CD=x, 点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1, y=x+1(x0) 故选A 2【答案】A 【解析】 解:连接OP, OC=OP, OCP=OPC OCP=DCP,CDAB, OPC=DCP OPCD POAB OA=OP=1, AP=y=(0x1) 故选 A 二、填空题 3. 【答案】1或3或; 【解析】 解:抛物线y1=2x2向右平移2个单位, 抛物线y2的函数解析式为y=2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 冲刺 综合 问题 基础
限制150内