2022年中考冲刺:代几综合问题(提高).doc
《2022年中考冲刺:代几综合问题(提高).doc》由会员分享,可在线阅读,更多相关《2022年中考冲刺:代几综合问题(提高).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考冲刺:代几综合问题(提高)中考冲刺:代几综合问题(提高) 一、选择题 1.(2020鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线ABM方向匀速运动,到M时停止运动,速度为1cm/s设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是() A BCD 2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为( ) 二、填空题 3. 在平面直角坐标系中,点A的坐标为(4,0)
2、,点B的坐标为(4,10),点C在y轴上,且ABC是直角三角形,则满足条件的 C点的坐标为_ 4.(2020梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是_ 三、解答题 5. 如图,在RtABC中,C=90,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿
3、BC向终点C运动过点P作 PEBC交AD于点E,连接EQ设动点运动时间为t秒(t0) (1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由; (2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行为什么? (3)当t为何值时,EDQ为直角三角形 6如图,在平面直角坐标系中,四边形OABC是梯形,OABC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(
4、秒) (1)求线段AB的长;当t为何值时,MNOC? (2)设CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 7. 条件:如下图,A、B是直线l同旁的两个定点 问题:在直线l上确定一点P,使PA+PB的值最小 方法:作点A关于直线l的对称点A,连接AB交l于点P,则PA+PB=AB的值最小(不必证明) 模型应用: (1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点连接BD,由正方形对称性可知,B与D关于直线AC对称连接ED交AC于P,则PB+PE的最小值是_; (2)如图2,O的半径为2,点A、B、C在O上
5、,OAOB,AOC=60,P是OB上一动点,求PA+PC的最小值; (3)如图3,AOB=45,P是AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求PQR周长的最小值 8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得CBM沿CM翻折后,点B落在x轴上,记作N点 (1)求N点、M点的坐标; (2)将抛物线y=x236向右平移a(0a10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式; (3)抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标; 若点D是线
6、段OC上的一个动点(不与O、C重合),过点D作DEOA交CN于E,设CD的长为m,PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由 9. 如图,直线y=kx1与x轴、y轴分别交于B、C两点,tanOCB= (1)求B点的坐标和k的值; (2)若点A(x,y)是第一象限内的直线y=kx1上的一个动点当点A运动过程中,试写出AOB的面积S与x的函数关系式; (3)探索:在(2)的条件下: 当点A运动到什么位置时,AOB的面积是; 在成立的情况下,x轴上是否存在一点P,使POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在
7、,请说明理由 10. (2020成都)如图,在平面直角坐标系xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC (1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示); (2)点E是直线l上方的抛物线上的一点,若ACE的面积的最大值为,求a的值; (3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由 11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC
8、,BC的中点,M为直线BC上一动点,DMN为等边三角形(点M的位置改变时,DMN也随之整体移动) (1)如图,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由; (2)如图,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由 答案与解析 【答案与解析】一、选择题 1.【答案】A. 【解析】分两种情况: 当0t
9、4时, 作OGAB于G,如图1所示: 四边形ABCD是正方形, B=90,AD=AB=BC=4cm, O是正方形ABCD的中心, AG=BG=OG=AB=2cm, S=APOG=t2=t(cm2), 当t4时,作OGAB于G, 如图2所示: S=OAG的面积+梯形OGBP的面积=22+(2+t4)2=t(cm2); 综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A 2.【答案】A. 三、填空题 3.【答案】 (0,0),(0,10),(0,2),(0,8) 4.【答案】(23n1,0). 【解析】点B1、B2、B3、Bn在直线y=2x的图象上, A1B1=4,A2B2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 冲刺 综合 问题 提高
限制150内