2021年最新利用导数解决不等式恒成立中参数问题--学案.pdf
《2021年最新利用导数解决不等式恒成立中参数问题--学案.pdf》由会员分享,可在线阅读,更多相关《2021年最新利用导数解决不等式恒成立中参数问题--学案.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档精品文档利用导数解决不等式恒成立中的参数问题一、单参数放在不等式上型:【例题 1】(07 全国理)设函数()xxf xee若对所有0 x都有()f xax,求a的取值范围解:令()()g xf xax,则()()xxg xfxaeea,(1)若2a,当0 x时,()20 xxg xeeaa,故()g x在(0,)上为增函数,0 x时,()(0)g xg,即()f xax(2)若2a,方程()0g x的正根为214ln2aax,此时,若1(0,)xx,则()0gx,故()g x在该区间为减函数1(0,)xx时,()(0)0g xg,即()f xax,与题设()f xax相矛盾综上,满足条
2、件的a的取值范围是(,2说明:上述方法是不等式放缩法【针对练习1】(10 课标理)设函数2()1xf xexax,当0 x时,()0f x,求a的取值范围解:【例题 2】(07 全国文)设函数32()2338f xxaxbxc在1x及2x时取得极值(1)求a、b的值;(2)若对于任意的0,3x,都有2()f xc成立,求c的取值范围解:(1)2()663fxxaxb,函数()f x在1x及2x取得极值,则有(1)0f,(2)0f即6630241230abab,解得3a,4b(2)由(1)可知,32()29128f xxxxc,2()618126(1)(2)fxxxxx当(0,1)x时,()0f
3、x;当(1,2)x时,()0fx;当(2,3)x时,()0fx当1x时,()f x取得极大值(1)58fc,又(0)8fc,(3)98fc则当0,3x时,()f x的最大值为(3)98fc对于任意的0,3x,有2()f xc恒成立,298cc,解得1c或9c,因此c的取值范围为(,1)(9,)最值法总结:区间给定情况下,转化为求函数在给定区间上的最值【针对练习2】(07 重庆理)已知函数44()ln(0)f xaxxbxcx在1x处取得极值3c,其中a、b、c为常数(1)试确定a、b的值;(2)讨论函数()f x的单调区间;(3)若对任意0 x,不等式2()2f xc恒成立,求c的取值范围精品
4、w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 10 页精品文档精品文档解:【针对练习3】(10 天津文)已知函数323()12f xaxx()xR,其中0a若在区间1 1,2 2上,()0fx恒成立,求a的取值范围解:精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 10 页文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9
5、X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2
6、U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1
7、K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G
8、2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM
9、5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z
10、10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档
11、编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3精品文档精品文档【例题 3】(08 湖南理)已知函数22()ln(1)1xf xxx(1)求函数()f x的单调区间;(2)若不等式1(1)n aen对任意的nN都成立(其中e是自然对数的底数),求a的最大值解:(1)函数()f x的定义域是(1,),22222ln(1)22(1)ln(1)2()1(1)(1)xxxxxxxfxxxx设2()2(1)ln(1)2g xxxxx则()2ln(1)2g xxx,令()2ln(1)2h x
12、xx,则22()211xh xxx当10 x时,()0h x,()h x在(1,0)上为增函数,当0 x时,()0h x,()h x在(0,)上为减函数()h x在0 x处取得极大值,而(0)0h,()0(0)g xx,函数()g x在(1,)上为减函数于是当10 x时,()(0)0g xg,当0 x时,()(0)0g xg当10 x时,()0,fx()f x在(1,0)上为增函数当0 x时,()0fx,()f x在(0,)上为减函数故函数()f x的单调递增区间为(1,0),单调递减区间为(0,)(2)不等式1(1)n aen等价于不等式1()ln(1)1nan,由111n知,11ln(1)
13、ann设11()ln(1)G xxx,(0,1x,则22222211(1)ln(1)()(1)ln(1)(1)ln(1)xxxG xxxxxxx由(1)知,22ln(1)01xxx,即22(1)ln(1)0 xxx()0G x,(0,1x,于是()G x在(0,1上为减函数故函数()G x在(0,1上的最小值为1(1)1ln 2G a 的最大值为11ln 2小结:解决此类问题用的是恒成立问题的变量分离的方法,此类方法的解题步骤是:分离变量;构造函数(非变量一方);对所构造的函数求最值(一般需要求导数,有时还需求两次导数);写出变量的取值范围【针对练习4】(10 全国 1 理)已知()(1)ln
14、1f xxxx,若2()1xfxxax,求a的取值范围解:【针对练习5】若对所有的,)xe都有lnxxaxa成立,求实数a的取值范围精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 10 页文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10
15、W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3
16、 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4
17、T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C
18、3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:
19、CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R
20、7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5
21、HN1K10W7G2T3 ZM5X4T6Z10C3精品文档精品文档解:二、单参数放在区间上型:【例题 4】已知三次函数32()5fxaxxcxd图象上点(1,8)处的切线经过点(3,0),并且)(xf在3x处有极值(1)求)(xf的解析式;(2)当(0,)xm时,()0f x恒成立,求实数m的取值范围解:(1)2()310fxaxxc,(1)310fac,于是过点(1,8)处的切线为8(310)(1)yacx,又切线经过点(3,0),360ac,)(xf在3x处有极值,(3)27300fac,又(1)58facd,由解得:1a,3c,9d,32()539f xxxx(2)2()3103(31)
22、(3)fxxxxx,由()0fx得113x,23x当1(0,)3x时,()0fx,()f x单调递增,()(0)9f xf;当1(,3)3x时,()0fx,()f x单调递减,()(3)0f xf当3m时,()0f x在(0,)m内不恒成立,当且仅当(0,3m时,()0f x在(0,)m内恒成立,m的取值范围为(0,3【针对练习6】(07 陕西文)已知cxbxaxxf23)(在区间0,1上是增函数,在区间(,0),(1,)上是减函数,又13()22f(1)求)(xf的解析式;(2)若在区间0,(0)mm上恒有()f xx成立,求m的取值范围解:精品w o r d 学习资料 可编辑资料-精心整理
23、-欢迎下载-第 4 页,共 10 页文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3
24、ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T
25、6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3文档编码:CY9X9R7I2U5 HN1K10W7G2T3 ZM5X4T6Z10C3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 最新 利用 导数 解决 不等式 成立 参数 问题
限制150内