大学物理教案设计之电通量与高斯定理.pdf
《大学物理教案设计之电通量与高斯定理.pdf》由会员分享,可在线阅读,更多相关《大学物理教案设计之电通量与高斯定理.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中国地质大学(武汉)大学物理教案设计课题:电通量高斯定理学院:班号:姓名:指导老师:课题:电通量 高斯定理课时:1教 学 目 标:1.理解电通量的概念2.掌握各种几何面电通量的计算3.通过典型例题分析,能自行导出高斯定理4.掌握高斯定理的含义,并能简单运用教 学 内 容:1.电通量指电场线对于某几何面的通过量值,对电通量概念的理解是导出高斯定理的前提与基础。2.高斯定理是静电学部分非常重要的定理之一,是计算具有高度对称性静电场的强大理论工具。3.高斯定理表明了场强通过任意闭合曲面的通量与闭合曲面内的电荷之间的数值关系,对高斯定理内容的正确理解是准确运用高斯定理的保证。教 学 重 点:高 斯定理
2、的理解与运用教 学 难 点:利 用 高斯定理计算电场强度文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H
3、6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5
4、K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V
5、10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E
6、8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4
7、E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L
8、5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9教 学 过 程:复习回顾前面我们学习了库仑定律,我们知道了静止电荷周围存在静电场,并且用电场强度0FEq定量的描述电场的性质,还学习了电场的计算,由点电荷的电场3014qErr,采用叠加原理计算各种带电体的电
9、场分布。本节我们课讨论电通量及高斯定理,对高斯定理的理解是本堂课的重点。为得出高斯定理,我们先引入电通量的概念。一、电通量1定义:通过电场中任一给定面的电场线的根数称为通过该面的电通量。用e表示。a.均匀电场通过垂直面的电通量:通过倾斜面的电通量:平面S的法线方向可以任意取定,一般确保0eb.非均匀电场如图所示,在 S上取面元dS,dS可看成平面,dS上E可视为均匀,设dS单位法向向量为n,记为d S。d S与该处E夹角为,则通过dS电场强度通量与场强的关系为:SdEde或者edEdS通过曲面 S的电场强度通量为:seeSdEd在任意电场中通过封闭曲面的电场强度通量:板书重点:点电荷电场公式3
10、014qErr板书重点:edEdScoseESE SSEEnESeESE S文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z
11、1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1
12、 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文
13、档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z
14、1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6
15、F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K
16、9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9Ex y z esE dS一般约定:闭合面S的法线方向n规定指向外侧,电场线出则0e,入则0e。例:在均匀电场中有一立方形的闭合面,如图,已知ibE,则通过该闭合面的电通量是多少?解:左右
17、SESEe左右SESE-0e二、高斯定理1高斯定理是关于闭合曲面的电通量的定理。我们先讨论最简单的情况。如图所示,q为正点电荷,S为以+q为中心以任意r 为半径的球面,dS为球面上一面元。其电通量为:320044eqqdE dSrdSdSrr通过闭合曲面S的电场强度通量为:330044esssqqE dSr ndSrdSrr2200044ssqqqdSdSrr2.点电荷电场中任意闭合曲面的电通量下面证明0eq对包围q的任意曲面也成立:q在 S内情形如图所示,在 S内做一个以q为中心,任意半径 r 的闭合球面 S1,由 1 知,通过 S1的电通量为0q。通过 S1的电力线必通过 S,说明为什么立
18、方形的前后上下e=0课堂说明:该例题从侧面验证了高斯定理的正确性,但非严格的证明。e1eqS1SrqqEndSr文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5
19、K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V
20、10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E
21、8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4
22、E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L
23、5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q8E8H6F1 ZH9G7X4E5K9文档编码:CX1L5V10Z1Z1 HM5Q
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 教案设计 通量 定理
限制150内