最新常见材料设备的腐蚀防护与保温施工PPT课件.ppt
《最新常见材料设备的腐蚀防护与保温施工PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新常见材料设备的腐蚀防护与保温施工PPT课件.ppt(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、常见材料设备的腐蚀防护与保温常见材料设备的腐蚀防护与保温施工施工2.1材料设备的腐蚀与防护一、概述一、概述腐蚀腐蚀是材料与它所处环境介质之间发生作用而引起材料的变质和破坏。1、腐蚀的危害、腐蚀的危害腐蚀所造成的危害非常严重:腐蚀不仅会带来巨大的经济损失、造成资源和能源的严重浪费,而且还会污染人类生存的环境、引发灾难性事故。(1)经济损失巨大(2)资源和能源浪费严重(3)引发灾难性事故 (4)造成环境污染 2、腐蚀与防护科学的发展、腐蚀与防护科学的发展(1)远在5000年前我们的祖先就采用火漆作为木、竹器的防腐涂层。出土的春秋战国时期的武器,有的至今毫无锈蚀,原因是其表面有一层致密的含铬的黑色氧
2、化物保护层。如勾践剑。2.1材料设备的腐蚀与防护(2)极化)极化极化极化是指原电池由于电流通过,使其阴极和阳极的电极电位偏离其起始电位值的现象。电流流过阴极使阴极电位降低的现象,称为阴极极化。电流流过阳极使阳极电位升高的现象,称为阳极极化。显然,极化减小了电池两极之间的电位差,导致金属腐蚀速度的降低。通常可以将极化的机理分为活化极化(电化学极化)、浓差极化和电阻极化。活化极化活化极化:当电流通过电极时,因电化学反应迟缓,而造成电极电位偏离平衡电位的现象称为活化极化或电化学极化。浓差极化浓差极化:当电流流过电极时,因电极反应物(或反应生成物)输运迟缓,而造成电极电位偏离平衡电位的现象称为浓差极化
3、。电阻极化电阻极化:电阻极化是由于在电极表面上生成了具有保护作用的氧化膜或不溶性的腐蚀产物等引起的。2.1材料设备的腐蚀与防护(3)钝化)钝化钝化钝化就是金属与介质作用后,失去其化学活性,变得更为稳定的现象。使金属发生钝化的物质称为钝化剂。成相膜理论成相膜理论认为,当金属溶解时,可在金属表面生成一层致密的、覆盖性良好的固体产物。这些产物作为一个独立的相存在,把金属和溶液机械地隔离开来,从而使金属的溶解速度大大降低,使金属转入钝态。吸附理论吸附理论吸附理论吸附理论认为,引起金属钝化并不一定要形成固相膜,而只要在金属表面或部分表面上形成氧或含氧粒子的吸附层。这种吸附层改变了金属/溶液表面的结构,使
4、金属反应的活化能显著升高,故金属同腐蚀介质的化学反应速度将显著减小。2.1材料设备的腐蚀与防护(4)氢去极化和氧去极化腐蚀)氢去极化和氧去极化腐蚀电化学腐蚀中金属的阳极溶解与介质中氧化剂的还原是一对共轭反应。促进或抑制阴极过程,便可以促进或抑制金属的阳极溶解。氢去极化腐蚀氢去极化腐蚀:以氢离子还原反应为阴极过程的腐蚀称为氢去极化腐蚀,简称析氢腐蚀。显然,只有当金属的电极电位较氢电极的平衡电位为负时,才有可能发生析氢腐蚀。氢去极化过程包括以下几个步骤:a.水化氢离子脱水 HnH2OHnH2Ob.形成吸附氢原子 HM(e)MH (电化学步骤)c.吸附氢原子脱附 MHMHH22M (脱附步骤)d.氢
5、分子形成气泡,从表面逸出。迟缓放电理论认为控制反应速度的步骤是放电,而复合理论认为,放电速度很快,控制反应的速度地复合成氢分子的这一步。2.1材料设备的腐蚀与防护_影响氢去极化腐蚀的主要因素影响氢去极化腐蚀的主要因素金属材料的性状:金属材料的性状:金属材料的本质、表面状态及金属阴极相杂质都会影响到金属的氢去极化腐蚀。材料与表面状态不同其氢过电位值不同,氢过电位值愈大,氢去极化腐蚀速度愈小,反之亦然。若杂质相的氢过电位很小,就会加速金属的腐蚀。pH值值减小,氢离子浓度增大,氢电极电位变得更正,加速金属的腐蚀阴极区的面积阴极区的面积增加,氢过电位减小,阴极极化率降低,析氢反应加快,从而导致腐蚀速度
6、增大。温度温度升高也使氢过电位减小,而且温度升高,阳极反应和阴极反应都将加快,所以腐蚀速度随温度的升高而增大。2.1材料设备的腐蚀与防护_ 氧去极化腐蚀氧去极化腐蚀:在中性和碱性溶液中,由于氢离子的浓度较低,析氢反应的电位较负,一般金属腐蚀过程的阴极反应往往不是析氢反应,而是溶液中的氧的还原反应,此时腐蚀去极化剂是氧分子。这类腐蚀称为氧去极化腐蚀,简称吸氧腐蚀。只有当金属的电极电位较氧电极的平衡电位为负时,才有可能发生吸氧腐蚀。氧去极化过程有以下几个步骤组成:a.氧通过气/液界面传质,由空气进入溶液;b.溶解氧通过对流扩散均布在溶液中;c.氧以扩散方式通过电极表面的扩散层,到达金属的表面;d.
7、氧在金属表面进行还原反应。2.1材料设备的腐蚀与防护影响氧去极化腐蚀的主要因素影响氧去极化腐蚀的主要因素:阳极材料电极电位阳极材料电极电位降低则氧去极化腐蚀的速度增大。溶解氧浓度溶解氧浓度增大,氧去极化腐蚀速度随之增大。但当溶解氧浓度提高到使腐蚀电流密度达到该金属的临界钝化电流密度时,金属将由活化溶解态向钝化态转化,其腐蚀速度就会显著降低。溶液流速溶液流速越大,腐蚀速度也就越大。但当流速增大到氧的还原反应不再受浓差极化控制时,腐蚀速度便与流速无关。对于可钝化金属,金属便转入钝态。盐浓度盐浓度的增大,溶液的电导率增大,腐蚀速度将有所提高。但当盐浓度高到一定程度后,腐蚀速度反而会随盐浓度的提高而减
8、慢。温度温度升高氧的扩散和电极反应速度加快,因此在一定温度范围内,随温度升高腐蚀速度加快。但温度升高又会降低氧的溶解度(敞口系统),使金属的腐蚀速度减小。2.1材料设备的腐蚀与防护3、金属腐蚀破坏的形态、金属腐蚀破坏的形态(1)全面腐蚀)全面腐蚀腐蚀分布在整个金属表面,结果使金属构件截面尺寸减小,直至完全破坏。纯金属及成分组织均匀的合金在均匀的介质环境中表现出该类腐蚀形态。(2)局部腐蚀)局部腐蚀腐蚀集中在金属表面局部地区,而其它大部分表面几乎不腐蚀,称为局部腐蚀。2.1材料设备的腐蚀与防护 电偶腐蚀电偶腐蚀两种金属在同一介质中接触,由于腐蚀电位不相等,因而它们之间便有电偶电流流动,使电位较低
9、的金属溶解速度增加,造成接触处的局部腐蚀;而电位较高的金属,溶解速度反而减小,这就是电偶腐蚀,亦称接触腐蚀或双金属腐蚀。要避免电偶腐蚀首先要正确选取材料正确选取材料,并尽可能消除面积效应,添加环消除面积效应,添加环缓蚀剂缓蚀剂。正确选材正确选材:电偶腐蚀的推动力是互相接触的金属之间存在电位差。显然这种电位差越大,电偶腐蚀就越严重。因此,设备设计时应尽量避免异种合金互相接触。难以避免接触时,应尽可能选取电偶序中相距较近的合金,或者对相异合金施以相同的镀层。此外,采用绝缘性的表面保护层以及绝缘材料垫圈等都是防止电偶腐蚀的有效方法。消除面积效应消除面积效应:电偶对中阴极金属与阳极金属面积比,对电偶腐
10、蚀影响极大,大阴极、小阳极的电偶,将使阴极电流密度剧增,造成严重腐蚀添加适当的缓蚀剂添加适当的缓蚀剂,也可以有效地控制电偶腐蚀。2.1材料设备的腐蚀与防护 小孔腐蚀小孔腐蚀 在金属表面局部地区出现向深处发展的腐蚀小孔,而其余地区不被腐蚀或者只有很轻微的腐蚀,这种腐蚀形态称为小孔腐蚀,简称孔蚀或点蚀。孔蚀的影响因素及其控制主要包括以下几方面的内容:合金的成分和组织合金的成分和组织:孔蚀的敏感性与合金的成分、组织以及冶金质量有密切的关系。介质的组成和状况:介质的组成和状况:大多数的孔蚀是在含有卤族元素化合物的介质中发生的,因此,为预防孔蚀应尽量降低介质中卤素。此外,对溶液进行搅拌、循环或通气也有利
11、于预防和减轻孔蚀。缓蚀剂:缓蚀剂:硝酸盐、铬酸盐、硫酸盐及碱等能增加钝化膜的稳定性或有利于受损的钝化膜的再钝化,因而都是有效防止孔蚀的缓蚀剂。阴极保护阴极保护:利用阴极保护法,使金属的电极电位控制在孔蚀保护电位以下,就可以抑制孔蚀。2.1材料设备的腐蚀与防护 缝隙腐蚀缝隙腐蚀 金属部件在介质中,由于金属与金属或金属与非金属之间形成特别小的缝隙(一般在0.0250.1mm之间),使缝隙内介质处于滞流状态,引起缝内金属的加速腐蚀,这种局部腐蚀称为缝隙腐蚀。缝隙腐蚀的机理与孔蚀很相似,其区别主要在于腐蚀的初始段。孔蚀起源于自己开掘的蚀孔内,而缝隙腐蚀则发生在金属表面既存的缝隙中。在腐蚀形态上,孔蚀的
12、蚀孔窄而深,而缝隙腐蚀的蚀坑则相对地广而浅。缝隙腐蚀的影响因素与孔蚀的相似:控制缝隙腐蚀除可以采取防止孔蚀的相似措施外,设计中还应尽量注意结构的合理性,尽可能避免形成缝隙和积液的死角。对不可避免的缝隙,要采取相应的保护措施。另外,尽量控制介质中溶解氧的浓度,使溶氧浓度低于5106,这样在缝隙处就很难形成氧浓差电池,缝隙腐蚀则难以启动。2.1材料设备的腐蚀与防护 晶间腐蚀晶间腐蚀 腐蚀沿着金属或合金的晶粒边界区域发展,而晶粒本体的腐蚀很轻微,称为晶间腐蚀。是一种由材料微观组织电化学性质不均匀引发的局部腐蚀。贫化理论贫化理论认为晶界与晶内的电极电位的形成,形成一晶界区为阳极,晶粒本体为阴极的微观腐
13、蚀电池。晶间腐蚀的控制应着眼于材料本身的成分和组织。以奥氏体不锈钢敏化型晶间腐蚀为例:降低钢的含碳量 稳定化处理 重新固溶处理选择性腐蚀选择性腐蚀多元合金在电解质溶液中由于组元之间化学性质的不均云,构成腐蚀电池。2.1材料设备的腐蚀与防护(3)应力作用下的腐蚀)应力作用下的腐蚀结构和零件的受力状态是多种多样的,如拉伸应力、交变应力、冲击力、振动力等。不同应力状态与介质协同作用所造成的环境敏感断裂形式各不相同。应力腐蚀开裂应力腐蚀开裂:材料在静应力和腐蚀介质共同作用下发生的脆性开裂破坏现象称为应力腐蚀开裂,简称应力腐蚀。应力腐蚀是危害最大的腐蚀形态之一。应力腐蚀应是电化学腐蚀和应力机械破坏互相促
14、进裂纹的生成和扩展的过程。敏感的合金、特定的介质和一定的静应力是发生应力腐蚀的三个必要条件。对于一定的材料,其应力腐蚀只在特定的介质中发生。这种材料与敏感介质的组合关系,称为应力腐蚀体系。应力腐蚀的机理分为阳极溶解和氢脆机理两种。2.1材料设备的腐蚀与防护阳极溶解机理阳极溶解机理:该机理认为应力腐蚀裂纹的形成与扩展是阳极通道的形成与其延伸的过程。氢脆机理氢脆机理:认为阴极析氢反应在金属表面形成的吸附氢原子渗入内部引起氢脆,是导致应力腐蚀的主要原因。要避免应力腐蚀或对应力腐蚀加以控制,应主要考虑以下几方面的措施:要避免应力腐蚀或对应力腐蚀加以控制,应主要考虑以下几方面的措施:正确选材正确选材:根
15、据介质情况正确选材,避免构成应力腐蚀体系,或者减轻材料对应力腐蚀的敏感性。合理设计、改进制造工艺合理设计、改进制造工艺:结构设计应尽量减小应力集中效应,制造工艺应避免造成残余拉应力,采取表面强化方法,使零件表面产生残余压应力,以期抵消或削弱拉应力的作用。改善环境介质:善环境介质:一方面设法消除或减少介质中促进应力腐蚀的有害物质;另一方面可以向介质中加入适当的缓蚀剂。电化学保护:电化学保护:外加电流极化,使金属的电位远离应力腐蚀敏感区。但对氢脆敏感的材料则不能采取阴极保护。2.1材料设备的腐蚀与防护 腐蚀疲劳腐蚀疲劳:腐蚀介质和交变应力协同作用所引起的材料破坏的现象,称为腐蚀疲劳。同应力腐蚀和机
16、械疲劳相比,腐蚀疲劳的特点主要表现在:a.腐蚀疲劳没有真实的疲劳极限。b.腐蚀疲劳在任何腐蚀介质中都可能发生,但必须交变应力和腐蚀介质同时作用条件下,才能产生腐蚀疲劳。c.腐蚀疲劳性能与载荷频率、应力以及载荷波形有密切关系。d.腐蚀疲劳裂纹往往是多源的;与应力腐蚀相比,腐蚀疲劳裂纹的扩展很少有分叉的情况。腐蚀疲劳的控制主要采取以下几方面的措施。腐蚀疲劳的控制主要采取以下几方面的措施。正确选材正确选材:一般地讲,耐孔蚀的材料腐蚀疲劳性能好;对应力腐蚀敏感的材料,其腐蚀疲劳性能则较差合理设计、改进制造工艺 结构设计应避免应力集中。表面强化处理和表面合金化可以显著提高腐蚀疲劳性能2.1材料设备的腐蚀
17、与防护改善介质条件改善介质条件:如封闭体系中水中的除氧,以及水中添加铬酸盐等缓蚀剂均可延长钢材的腐蚀疲劳寿命。电化学保护电化学保护:阴极保护常用于海洋环境金属结构的腐蚀疲劳控制,效果良好。磨损腐蚀:磨损腐蚀:流体介质与金属之间或金属零件间的相对运动,引起金属局部区域加速腐蚀破坏的现象称为磨损腐蚀,简称磨蚀。磨蚀又可分为湍流腐蚀、空泡腐蚀和摩振腐蚀。A)湍流腐蚀:湍流腐蚀:在设备或部件的某些特定部位,介质流速急剧增大形成湍流,由此造成的腐蚀称为湍流腐蚀。湍流一方面加速了阴极去极化剂的供应量,同时也增加了流体对金属表面的切应力,若流体中含有固体颗粒,则金属表面的磨损腐蚀将更加严重。湍流腐蚀的控制可
18、采取合理选材、改善设计、降低流速、去除介质中的有害成分、覆盖防护层和电化学保护等多种方法。冷凝管内壁湍流腐蚀示意图空泡腐蚀示意图2.1材料设备的腐蚀与防护B)空泡腐蚀空泡腐蚀:流体与金属构件作高速相对运动,在金属表面局部区域产生湍流,且伴随有气泡在金属表面生成和破灭,使金属呈现与孔蚀类似的破坏特征,这种腐蚀称为孔泡腐蚀,也称气蚀。控制空泡腐蚀的有效方法首先是合理选材合理选材;或在构件上涂加保护层涂加保护层;减减弱或吸收气泡破裂时的高压冲击波弱或吸收气泡破裂时的高压冲击波;提高提高构件表面的光洁度光洁度;在构件设构件设计计时应根据水力学原理,尽可能避免造成压力突变区,防止气泡的生成。C)摩振腐蚀
19、:摩振腐蚀:摩振腐蚀是指在加有荷载的互相紧密接触的两构件表面之间,由于微小振动和滑动,使接触面出现麻点或沟纹,并在其周围存在着损伤微粒(腐蚀产物)的腐蚀破坏现象。摩振腐蚀也叫微动腐蚀、磨损氧化。摩振腐蚀的机理主要有磨损-氧化和氧化-磨损两种理论。减少或抑制摩振腐蚀,可采取以下几方面的措施:阻止接触面的相对微动阻止接触面的相对微动 在构件设计时通过增大接触面的法向应力,可阻止相对微动,并添加垫圈以吸收振动。另外在安装与检修时,要尽量紧固相接触的工件。2.1材料设备的腐蚀与防护使用润滑剂使用润滑剂:通过润滑作用减小摩擦系数,减少磨损。表面电镀表面电镀:在金属表面电镀镉、锌等低熔点金属,能减小摩擦系
20、数;若电镀铬等高熔点金属,则不易发生冷焊。提高接触金属的硬度提高接触金属的硬度:通过合理选材、表面氮化、表层冷变形强化等措施,均可提高接触面的硬度,从而减轻摩振腐蚀。(4)微生物腐蚀)微生物腐蚀由于介质中存在着某些微生物而使金属的腐蚀过程加速的现象,称之为微生物腐蚀,也简称为细菌腐蚀。并非微生物本身对金属的腐蚀,而是它们生命活动的结果直接或间接地对金属腐蚀过程产生影响。1)微生物对金属腐蚀过程的影响主要体现在以下几个方面)微生物对金属腐蚀过程的影响主要体现在以下几个方面:代谢产物具有腐蚀作用。如硫酸、有机酸和硫化物。改变环境介质条件。如:pH值、溶解氧等。影响电极极化过程。破坏非金属保护覆盖层
21、或缓蚀剂的稳定性。2.1材料设备的腐蚀与防护2)常见的细菌腐蚀:)常见的细菌腐蚀:厌氧性细菌腐蚀厌氧性细菌腐蚀:影响地下钢铁设备、构件腐蚀性最为重要的厌氧菌是硫酸盐还原菌(SRB)。这种菌能使硫酸盐还原成硫化物,而硫化物与介质中的碳酸等物质作用生成硫化氢,进而与铁反应形成硫化铁,加速了钢铁的腐蚀。好氧性细菌的腐蚀好氧性细菌的腐蚀:指适于并仅能在含有游离氧的环境中繁殖生存的一类微生物,如硫氧化菌、铁细菌、硫代硫酸盐氧化菌等。以硫氧化菌为例,它可将元素硫和含硫化合物氧化成硫酸,造成腐蚀性极强的环境,导致材料的快速腐蚀。厌氧与好氧联合作用下的腐蚀:厌氧与好氧联合作用下的腐蚀:在实际环境中,由于好氧菌
22、的腐蚀往往会造成厌氧的局部环境,使厌氧菌也得到繁殖,这样两类细菌的腐蚀与繁衍相辅相成,更加速了金属的腐蚀。细菌联合作用腐蚀的情况很普遍。2.1材料设备的腐蚀与防护3)细菌腐蚀的控制)细菌腐蚀的控制:原则上凡能够抑制细菌繁殖或电化学腐蚀的措施,都有助于防止或削弱金属的细菌腐蚀。采取的措施主要包括:使用杀菌剂或抑菌剂:使用杀菌剂或抑菌剂:根据细菌种类及介质选择高效、低毒和无腐蚀性的药剂。改变环境条件:改变环境条件:提高介质的pH值及温度(pH9.0,温度T50)、排泄积水、改善通气条件、减少有机物营养源等。覆盖防护层覆盖防护层:采用涂覆非金属覆盖层或金属镀层使构件表面光滑、在有机涂层中加入适量杀菌
23、剂等方法,可避免细菌的附着,减少细菌成垢机会,防止真菌对涂层的破坏。阴极保护阴极保护:阴极保护使构件表面附近形成碱性环境,抑制细菌活动。2.1材料设备的腐蚀与防护4、非金属材料的腐蚀、非金属材料的腐蚀非金属材料与环境介质作用,性能发生蜕化,甚至完全丧失使用功能的现象,称为非金属材料的腐蚀。非金属材料的组成和结构与金属完全不同,两者的腐蚀原理也有着本质的区别。除石墨外,非金属材料的导电性很差或完全不导电,所以即使将其置于电解质溶液中,也不会发生电化学腐蚀。非金属材料的腐蚀主要是由物理作用和化学作用引起的。(1)非金属无机材料的腐蚀非金属无机材料的腐蚀设备腐蚀防护方面涉及的耐蚀非金属无机材料,大多
24、属于硅酸盐材料。硅酸盐搪瓷的腐蚀实质上是搪瓷釉的腐蚀。硅酸盐搪瓷釉的主要成分为SiO2,并含有多种碱金属或碱土金属氧化物。它具有很好的耐酸性,而耐碱性相对较差。2.1材料设备的腐蚀与防护(2)非金属有机材料的腐蚀非金属有机材料的腐蚀 非金属有机材料的腐蚀与金属的腐蚀完全不同,其腐蚀过程主要是物理的或化学的作用,而不是电化学过程。物理腐蚀物理腐蚀:高分子材料的物理腐蚀就是其在介质中的溶解。整个溶解过程分为溶胀和溶解两个阶段。非晶态:线型结构溶胀后能溶解,体型结构只能溶胀晶态:难溶胀和溶解。防止措施:针对具体的介质条件选材极性原则极性原则:非极性的高分子材料不易溶于极性溶剂中;极性高分子材料易溶于
25、非极性溶剂中。溶解度参数原则溶解度参数原则:溶解度参数是一个近似描述溶剂分子之间或高分子材料大分子链间作用力大小的参数。当溶剂溶解度参数比高分子材料溶解度参数的差值小于1.7时为不耐溶剂腐蚀;大于2.5为耐溶剂腐蚀;1.72.5为有条件的耐溶剂腐蚀。2.1材料设备的腐蚀与防护化学腐蚀化学腐蚀:高分子材料的大分子中总含有一些具有一定活性的极性基团。这些极性基团与特定的介质发生化学反应,导致了材料性能的改变,从而造成了材料的老化或者裂解破坏,即为高分子材料的化学腐蚀。水解反应水解反应:高分子链中O、N、Si等原子能与碳原子构成极性健,这些极性健能与水发生水解。氧化反应氧化反应:大分子链上存在以被氧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 常见 材料 设备 腐蚀 防护 保温 施工 PPT 课件
限制150内