“两位数乘两位数”教学设计.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《“两位数乘两位数”教学设计.doc》由会员分享,可在线阅读,更多相关《“两位数乘两位数”教学设计.doc(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、算理就是计算的原理或者道理,是解决问题的算理就是计算的原理或者道理,是解决问题的操作程序。解决为什么这样算的问题。算法即计算的方法,是算法依赖于成立的数学原理,解决怎么算的问题。也就是说计算教学,由计算原理教学和技能训练两部分组成,在教学时教师应该指导学生理解算理,在理解算理的基础上掌握计算方法,最后形成计算技能。在计算教学活动中,我们不仅要注重计算技能的训练,更要注重计算原理的教学。课堂上对于计算原理,教师要讲深讲透,不能一带而过,多让学生进行探究行活动,然后对计算方法进行强化。处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。当前,计算教学中“走极端”的现象实质上
2、是没有正确处理好算理与算法之间关系的结果。一些教师受传统教学思想、教学方法的支配,计算教学只注重计算结果和计算速度,一味强化算法演练,忽视算理的推导,教学方式“以练代想”,学生“知其然,不知其所以然”,导致教学偏向“重算法、轻算理”的极端。与此相反,一些教师片面理解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。因此在计算教学中怎样有效进行算理与算法的有效链接,是值得我们每个数学教
3、师深思的问题。这节课刘老师就在教学中引导学生对计算的道理进行了深入的研究,帮助学生应用已有的知识领悟计算的道理。在教学中我们应以思维为主线,以算理为先导,以创造为契机进行计算教学,这样学生不但理解了算理,而且创造出了简便的计算方法,并发现了计算的规律,归纳出计算的法则,实现了算理和算法的有效统一。“两位数乘两位数”教学设计(第三稿)修改理由此次备课是基于专家指导、网上打磨的群体经验、学生的前测、实践研究和刘万元老师个人参考相关资料后修改的第三次备课。(此次备课是基于专家指导、网上打磨的群体经验、学生的前测、实践研究和刘万元老师个人参考相关资料后修改的第三次备课。)【教学内容】青岛版五年制小学数
4、学三年级上册第6365页。【教材与学情分析】“两位数乘两位数”是青岛版五年制教材三年级上册的内容,是两位数乘一位数的继续,是学习两位数乘两位数的起始,是三位数乘两位数的基础,所以这部分内容起到了承上启下的作用。学生已经学过了两位数乘一位数和两位数乘整十数,经过一定的引导学生有能力利用已有的知识经验计算出得数,老师课上要给学生提供充分的学习材料,利用多种手段引导学生回忆相关知识,启发学生整合旧知、推出新知,帮助学生规范书写过程,把算理和算法加以提升。学生只要学会了这部分内容,到三位数乘两位数的时候就可以将方法迁移过去。【设计理念】1.计算教学的核心是处理好算理和算法的关系。算理和算法相辅相成、缺
5、一不可。算法主要解决“怎样计算”的问题,算理主要回答“为什么这样算”的问题。算理是计算的依据,是算法的基础,而算法是依据算理提炼出来的计算方法和规则,它是算理的具体体现。算理和算法是计算教学中相辅相成、缺一不可的两个方面。处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。当前,计算教学中“走极端”的现象实质上是没有正确处理好算理与算法之间关系的结果。一些教师受传统教学思想、教学方法的支配,计算教学只注重计算结果和计算速度,一味强化算法演练,忽视算理的推导,教学方式“以练代想”,学生“知其然,不知其所以然”,导致教学偏向“重算法、轻算理”的极端。与此相反,一些教师片面理
6、解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。要正确处理好算理与算法的关系,就应引导学生在理解算理的基础上自主地生成算法,在算法形成与巩固的过程中进一步明晰算理。算法的形成不能依赖形式上的模仿,而要依靠算理的透彻理解,只有在真正理解算理的基础上掌握算法、形成计算技能,才能算是找到了算理与算法的平衡点。本节课的重点是两位数乘两位数的笔算,其算法主要是:先用一个因数每一位上的数分别
7、去乘另一个因数各个数位上的数;用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位;然后把各次乘得的数加起来。教学中,不仅要让学生知道这些算法,更重要的是要让学生明白为什么用每一位上的数分别去乘另一个因数的各个数位上的数,为什么用哪一位乘就和哪一位对齐(这正是本节课的一个难点),为什么要把每次乘得的数加起来。如果让学生充分经历了算法形成的过程,这些问题就不难理解了。2.计算教学要充分挖掘知识间的“纵向”联系,有效把握知识的这种联系,提高教学设计与实施的效果。小学阶段安排的学习内容,一般都是由低年级到高年级,根据各个年龄段学生的思维特点及自主探索的能力,将内容分段安排,这一特点在有关计算的学习中尤
8、为明显。如:整数乘法,分为四段来学习,一是表内乘法(学习乘法的根基),二是两三位数乘一位数,三是两位数乘两位数(即是本节课涉及的内容),四是三位数乘两位数。从知识安排的顺序可以看出,本节课涉及的两位数乘两位数在整个整数乘法中处于一个承上启下的地位,既要在前面知识(两三位数乘一位数)的基础上进行学习,又要为后面的知识(三位数乘两位数,甚至是小数乘法)做好方法的铺垫。【教学目标】1.通过学生小组合作、自主探索两位数乘两位数(不进位)口算和笔算方法的活动,使学生经历理解算理的过程,以逐步掌握算法。2.通过交流不同的计算方法,感受计算两位数乘两位数(不进位)方法的多样性,同时在算法优化的过程中进一步理
9、解算理。3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高交流合作的能力,获得成功的体验,树立学习的信心。【教学重点】探索两位数乘两位数(不进位)的算法,理解算理,初步形成计算技能。【教学难点】理解“用十位去乘”时得数的写法及道理。【教学过程】一、引出问题师:上节课我们已经欣赏了美丽的街景,有同学提出了这样一个问题:广场前的每根灯柱上有23盏灯,有这样的12根灯柱。一共有多少盏灯?这节课我们就来解决这个问题。根据信息和问题列出算式,并简单说一说列式的根据要求一共有多少盏灯,就是求12个23是多少。(板书:2312)找该算式和以前学过的乘法算式有什么不同?(使学生明
10、确知识的发展点。)板书课题:两位数乘两位数(设计意图:在前面打磨的过程中,有老师提出这是两位数乘两位数的第二课时,有关寻找信息、提出问题的过程在上一节课中已经完成,本节课可以直接出示上节课未解决的问题,省出时间探索算法、理解算理,提高教学的针对性和有效性。)二、理解算理,探索算法1.估算让学生先估一估2312的得数。(学生估算的结果可能是200、230或者240。)引导学生想一想:2312的实际得数比估算出来的数大还是小?为什么?(设计意图:在试算之前,先让学生进行估算,主要是引导学生联系上节课所学的两位数乘整十数来分析23乘12的结果大约是多少,从而为他们准确计算提供依据在估算的过程中学生很
11、自然的想到把12看成10,估算出的得数230,是10个23的和,还有2个23没算在里面,为下面口算准确得数渗透一些方法,实际上这也是新知识的一个生长点。用估算的方法来确定积的大致范围,可以帮助学生验证计算的结果,培养学生用估算验证的意识。)2.口算师:这道题的准确得数到底是多少?请同学们开动脑筋,看能不能利用以前学过的知识计算出这道题的得数?把计算的过程简要写到练习本上,遇到困难时,可以利用老师给你提供的图(23行12列的点子图)圈一圈、想一想,也可以和小组同学交流一下。师巡视指导。(个别学生可能想不出如何转化,老师可个别启发引导:2312表示12个23,我们能不能把12个23分开来算呢?先算
12、10个23再算2个23,然后再合起来)交流算法。学生可能会出现的算法:A:2310=230 232=46 230+46=276B:2012=240 312=36 240+36=276C:239=207233=69207+69=276D:236=1381382=276在交流的过程中,引导学生利用点子图圈一圈,每个算式算的是哪部分?找算法的共同点,初步理解算理。请学生说一说这些算法的共同点。(实际都是把12个23或23个12分开来求,因为分开之后能转化成以前学过的算式)小结:同学们真善于动脑筋,我们遇到了一个两位数乘两位数的算式,是以前我们没学过的,大家想到了把它转化成我们学过的两位数乘一位数和两
13、位数乘整十数的算式,并且将所得的结果进行相加,从而解决了新的问题。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。3.笔算请学生试着用竖式计算2312,遇到困难可以和小组的同学一起商量。学生试做,师巡视指导。展示交流。学生可能会出现的算法:A: 23 12 276 (引导学生明确:这样列竖式没法表示出计算过程)B:2 3 2 3 2 3 0 2 1 0 +4 6 4 6 2 3 0 2 7 6C: 2 3 1 24 6+2 3 02 7 6D:2 31 2 4 6 2 32 7 6(在学生没有提前学习的情况下,可能不会出现后两种竖式,这时需要老师加以启发
14、引导:3个竖式中哪些地方是重复的?我们能不能把3个竖式合并一下?如何使其成为一个竖式呢?怎样使笔算的形式变得更简单呢?然后再根据学生的合并情况交流、引导、提升)(如果学生能将3个竖式合并为C竖式,可以引导学生重点讨论如下几个问题:230的个位上的“0”可不可以不写?如果擦去“0”,大家会不会把它当成“23”,为什么?如果不写“0”除了少写一个数字,还有什么好处呢?学生充分讨论后,教师再让学生通过看竖式发现:乘完个位乘十位,十位上的1乘3得3,对齐4的下面写3,1乘2得2,在4的前面写2。这样算的时候不写“0”,可以简便我们的计算过程。)(设计意图:引导学生经历将口算的横式写成竖式的形式,将几个
15、竖式合并,再将竖式进一步简化的过程。同时在此过程中学生也很清晰的看出每一部分的来龙去脉,更容易的理解算理。)4.进一步明算理引导学生分别说一说46是怎么来的?表示什么?23表示什么?怎么来的?尤其要明确23写在百位和十位上就是表示23个十,也就是230。(设计意图:抓住关键,进一步明晰算理。)5.规范计算过程师生共同梳理计算的过程。 2 31 2师:先用个位上的2和23相乘。(板书) 2 3 1 2 4 6师:再用十位上的1和23相乘。一三得三,3写在哪里?为什么?师:在十位下面写3就表示3个十了。一二得二,2写在哪?为什么?2 3 1 2 4 6 2 3 2 7 6师:竖式中的46是怎么来的
16、?23实际上是多少?它是怎么来的?(板书:232和2310) 2 3 1 24 6 232 2 3 2310 2 7 6(设计意图:清晰再现计算过程,进一步明确算法。)6.练习独立用竖式计算2143,集体订正时说一说计算过程以及每一步分别是怎么算出来的。(设计意图:紧扣新知,及时巩固。)三、巩固练习1.根据竖式写得数。师:你是从竖式中的哪一部分看出来的?(设计意图:进一步巩固算理。)2.你能很快判断出对错吗?4221=126(出示横式,不出竖式)(学生可能根据个位上的数进行判断,也可能利用估算进行判断)找错因,明算理。(出示竖式)(设计意图:有老师提出练习量小的问题,我个人认为本节课探索算法、
17、理解算理的过程需充分展开,后面供练习的时间是很有限的,这些练习也不一定能处理完。一节课的时间是有限的40分钟,要抓住重点内容充分展开、透彻理解,至于计算技能的形成,后面肯定还要安排12课时专门进行相关练习,所有过程不可能在一节课中全部展示。)四、总结师:你觉得在用竖式计算两位数乘两位数时应注意什么?师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。师:你还有哪些收获呢?(比如:转化的方法,横式变竖式的过程等)(设计意图:在打磨过程中,有老师提出总结不应仅仅总结算法,还应总结学习方法上的收获。)在应用中感受数学好玩用有余数的除法解决问题教学目标
18、:1、通过对熟悉的生活事例的探讨和研究,初步学会用有余数的除法解决生活中的简单实际问题。2、学会正确解答简单的有余数问题,能正确地写出商和余数的单位名称。3、在解决较复杂问题中,感知数学的应用价值,获得运用知识解决问题的成功体验。教学重点、难点:运用恰当的方法和策略解决实际问题设计意图:1、关于目标定位。本课内容是在学生学了表内除法、用竖式计算除法、余数的意义后教学的,学生已经可以比较自如地解决用除法计算的简单实际问题,懂得了余数必须比除数小的道理,对于有余数除法的计算,包括口算、笔算,学生也有了能力上的储备。因此本堂课一个重要的目的就是让学生能运用有余数除法的知识解决生活中的简单问题。通过解
19、决问题,不仅加深对余数意义的理解,巩固有余数除法的计算方法,还让学生感悟到数学来源于生活,又用于现实生活,在应用中感受数学好玩。2、关于材料选择。本节课所用素材全部以学生课前在生活中发现寻找的用有余数除法解决问题为背景,通过选择、改编与整合而成的。这部分内容,人教版教材安排在三年级上册的例4,北师大版教材安排在二年级下册,课题是租船,青岛版教材安排在二年级下册,课题是野营。为了能让学生更好理解有余数除法的基本数量关系,教学时,本着优化教材的原则,适当整合不同版本的教材并进行了一定的拓展。如人教版教材例4以学生熟悉的跳绳中的分组做为素材,教学的重点是让学生在解答一组对比题后加深对除法意义以及商和
20、余数所表示的意义的理解。而对于北师大版教材中租船的问题情境,青岛版教材野营中的搭帐篷问题,重点是让学生经历运用有余数除法的知识,根据实际情况对“余数”合理进行取舍。同时,还借助于学生喜欢的游戏猜颜色的周期问题,作为教材的补充和延伸,使学生发现在生活学习中有很多类似的周期问题,可以通过用余数的除法这一知识去解决,从而进一步感受数学与生活的联系,感受到数学好玩。教学过程预设:一、游戏激趣,导入新课。师:同学们,这节上数学课,我们就用以前学过的数学知识来玩一个猜一猜的游戏。请看大屏幕!(大屏幕逐一红黄蓝红黄蓝6个彩球)按照这样的顺序依次排列,第10个是什么颜色?为什么?学生回答师:你们都是这样猜的吗
21、?我们一起来验证一下!第7个红色,第8个,第9个,第10个,红色!你们真是不简单了!鼓励一下自己!刚才同学们是用以前学过的“找规律”的方法数出第10个是红色,那第29个呢?师:难住了吧?那,你们出题,我来猜!(大屏幕打出一屏按规律排列的彩球)师:你任意说一个号码,我能马上猜出这个球的颜色。不信吗?你来试试!(学生出题,教师回答,教师根据学生提问板书算式)【设计意图:用猜彩球颜色的情境导入新课,既激起了学生的好奇心和求知欲,让学生觉得所学内容好玩,又巧妙地照应了本课的教学内容,轻松自然,直奔主题。】师:很神奇吧!你知道我是怎么猜的吗?其实,我刚才能猜出来,多亏这些算式的帮忙,一起来算一算吧!这里
22、还有一些有余数的除法,我们比比谁能口算的又对又快!商几余几?(大屏幕出示口算题,学生口答)【我们力求在继承与创新中寻求简洁有效的教学方式。为此,课堂上非常注重基础知识和基本技能的掌握,特别在此环节中设计有余数除法的口算,了解学生的计算能力,重视新旧知识的联系,为学生更好地解决问题打好基础。】师:同学们,生活中还有很多问题,都可以用有余数的除法来解决,看!这是大家搜集的生活中的分组问题、乘车问题、租船问题等等,这节课我们就来学习“用有余数的除法解决问题”(板书课题)。【从课前生活中寻找“有余数除法解决的问题”入手,这样上课前学生自身对有余数除法的认知就已经开始关注,这样利于学生迅速调动认知体系中
23、与本节课知识有关的认知,为学习新课做好准备;同时,教师能把握学生的认知起点,灵活对教学做出相应的调整;还可以使一部分已经有所认识的孩子在上课开始就体验到课前有丰富认知的喜悦,促使学生今后能更主动地在课前就到生活作中去发现数学问题,也为本节课研究“有余数除法应用”提供更广泛的研究素材。】二、解决简单问题,理解基本数量关系。师:下面我们就先来看一看同学们搜集的与我们今天的学习生活最紧密的分组问题。【研究学生搜集的生活中的有余数除法的问题,引导学生养成从生活中发现、搜集数学问题的习惯】(大屏幕出现信息图:我们班36位同学分组学习,每5人分一组。)师:根据这两条数学信息,你能提出什么数学问题?教师与学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两位数 教学 设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内