《PLC控制的三面组合机床实验装置设计.doc》由会员分享,可在线阅读,更多相关《PLC控制的三面组合机床实验装置设计.doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、题 目 PLC控制的三面组合机床实验装置设计 学生姓名 ee 学号 ee 所在学院 机 械 工 程 学 院 专业班级 机 械 制 造 及 其 自 动 化 指导教师 ee 完成地点 ee 2012 年 6 月 18 日PLC控制的三面组合机床实验装置设计ee(ee)指导老师:ee摘要本文以PLC控制的三面组合机床实验装置为研究对象,通过对主要结构和运动形式的探究以及对机床的工作过程和控制要求分析,给出了机床运动循环图、液压系统设计、液压元件动作表;通过采用PLC控制组合机床实验装置,进行了软硬件设计,列出了PLC的I/O地址分配表,绘制了PLC的I/O分配图和单循环手动/自动工作流程图以及控制方
2、法,编写PLC控制程序的梯形图和指令表;并设计人机界面控制面板,使整个实验装置控制系统的操作变得简单、方便,大大提高了系统的自动化程度和实用性,为进一步熟悉复杂组合机床,乃至进一步开发先进组合机床打下基础。关键词实验装置;组合机床;PLC Experimental Apparatus Design of Triple-sided Combination Machine Tools Based on PLC Control ee(ee)Tutor:eeAbstract:Experimental device based on PLC control of the triple combinati
3、on machine tools as the research object,though to the main structure and motion forms of inquiry and analysis of the working process and control requirements of machine tools,machine tool is given motion cycle diagram, design of hydraulic system, hydraulic components motion table,By adopting PLC con
4、trol experiment device of combined machine tool, the hardware and software design, lists the PLC I/O address allocation table, mapped the PLC I/O distribution diagram and the single manual/automatic work flow chart and control method,write the PLC control program of ladder diagram and instruction li
5、st;And man-machine interface control panel design,make the whole experiment device control system becomes simple, convenient operation,greatly improving the degree of automation and practicability of the system,in order to further familiar with complex combination machine tools,and lays the foundati
6、on to further develop advanced modular machine tool.Keywords:The experimental device Combination machine tools Programmable controller一、三面组合机床实验装置概述11.1 机床主要结构部件11.2 机床工作过程11.3 控制方案简述1二、硬件系统22.1 传动方案简介22.1.1 磁力传动22.1.2 机械传动22.1.3 气压传动22.1.4 电力传动22.1.5 发展中的复合传动技术32.2 各传动方式的比较32.3 传动方案的最终选择3三、液压系统设计43
7、.1 PLC控制的三面组合机床实验装置工作流程43.2 液压系统原理图43.3 机床动力滑台、工件定位装置、夹紧装置控制要求53.4液压滑台工况说明63.5 负载分析与速度分析63.6确定液压缸的主要参数73.7 拟定液压系统图83.8 液压元件的选择93.9 系统油液温升验算9四、PLC控制系统设计104.1 PLC的概述104.2 PLC的选型114.3 PLC的I/O分配表144.4 PLC的外围硬件电路设计154.4 I/O接线图17五、PLC控制系统程序设计185.1 PLC的编程语言185.2 PLC的编程方法185.3 PLC编程软件概述195.4 程序设计21六、 致谢25七、
8、参考文献26一、三面组合机床实验装置概述1.1 机床主要结构部件底座、床身、铣削动力头、液压动力滑台、液压站、工作台、工件松紧油缸等组成。机床底座上安放有床身,床身上一头安装有液压动力滑台,工件及夹紧装置放于滑台上。床身的两边各安装有一台铣销头,上方有立铣头,液压站在机床附近。1.2 机床工作过程操作者将要加工的零件放在工作台的夹具中,在其他准备工作就绪后,发出加工指令。工件夹紧后压力继电器动作,液压动力滑台(工作台)开始快进,到位转工进,同时起动左和右1铣头开始加工,加工到某一位置,立铣头开始加工,加工又过一定位置右1铣头停止,右2铣头开始加工,加工到终点三台电机同时停止。待电机完全停止后,
9、滑台快退回原位,工件松开,一个自动工作循环结束。操作者取下加工好的工件,再放上未加工的零件,重新发出加工指令重复上述工作过程。1.3 控制方案简述一般来说,PLC控制系统有以下三种类型1)PLC构成的单机系统这种系统的被控对象是单一的机器生产,其控制器是由单台PLC构成,一般不需要与其它PLC或计算机进行通信。但是,设计者还要考虑将来是否联网的需要,如果有的话,应当选用具有通信功能的PLC.如图1.1所示。2)PLC构成的集中控制系统这种系统的被控对象通常是数台机器,该系统的控制单元由单台PLC构成,每个被控对象与PLC指定的I/O相连。由于采用一台PLC控制,因此,各被控对象之间的数据、状态
10、不需要另外的通信线路。但是,这种系统也有一个缺点,一旦PLC出现故障,整个系统将停止工作.对于大型的集中控制系统,通常采用冗余系统克服上述缺点。如图1.2所示。 图1.1 PLC单机系统 图1.2 PLC集中控制系统3)PLC构成的分布式控制系统这类系统的被控对象通常比较多,分布在一个较大的区域内,相互之间比较远,而且,被控对象之间经常的交换数据和信息。这种系统的控制器采用若干个相互之间具有通信功能的PLC构成.系统的上位机可以采用PLC,也可以采用工控机。如图1.3所示。图1.3 PLC分布控制系统 由于只想用三台电机以及数量不是很多的其它被控对象,可以使用单台PLC进行多个对象的控制,只要
11、适当的选用高性能的PLC,完全能够胜任。所以我们采用如图1.2所示的控制结构。二.电机选择2.1电动机选择2.1.1选择电动机类型2.1.2选择电动机容量电动机所需工作功率为:;工作机所需功率为:;传动装置的总效率为:;传动滚筒 滚动轴承效率 闭式齿轮传动效率 联轴器效率 代入数值得:所需电动机功率为:略大于 即可。选用同步转速1460r/min ;4级 ;型号 Y160M-4.功率为11kW2.1.3确定电动机转速取滚筒直径1.分配传动比(1)总传动比(2)分配动装置各级传动比取两级圆柱齿轮减速器高速级传动比则低速级的传动比2.1.4 电机端盖组装CAD截图 图2.1.4电机端盖2.2 运动
12、和动力参数计算2.2.1电动机轴 2.2.2高速轴2.2.3中间轴2.2.4低速轴2.2.5滚筒轴3.齿轮计算3.1选定齿轮类型、精度等级、材料及齿数1按传动方案,选用斜齿圆柱齿轮传动。2绞车为一般工作机器,速度不高,故选用7级精度(GB 10095-88)。3材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280 HBS,大齿轮材料为45钢(调质)硬度为240 HBS,二者材料硬度差为40 HBS。4选小齿轮齿数,大齿轮齿数。取5初选螺旋角。初选螺旋角3.2按齿面接触强度设计由机械设计设计计算公式(10-21)进行试算,即3.2.1确定公式内的各计算数值(1)试选载荷系数1。(
13、2)由机械设计第八版图10-30选取区域系数。(3)由机械设计第八版图10-26查得,则。(4)计算小齿轮传递的转矩。(5)由机械设计第八版表10-7 选取齿宽系数(6)由机械设计第八版表10-6查得材料的弹性影响系数(7)由机械设计第八版图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。13计算应力循环次数。(9)由机械设计第八版图(10-19)取接触疲劳寿命系数; 。(10)计算接触疲劳许用应力。取失效概率为1%,安全系数S=1,由机械设计第八版式(10-12)得(11)许用接触应力3.2.2计算(1)试算小齿轮分度圆直径=49.56mm(2)计算圆周速度
14、(3)计算齿宽及模数 =2mmh=2.252.252=4.5mm49.56/4.5=11.01(4)计算纵向重合度0.tan=20.73(5)计算载荷系数K。已知使用系数根据v= 7.6 m/s,7级精度,由机械设计第八版图10-8查得动载系数由机械设计第八版表10-4查得的值与齿轮的相同,故由机械设计第八版图 10-13查得由机械设计第八版表10-3查得.故载荷系数11.111.41.42=2.2(6)按实际的载荷系数校正所算得分度圆直径,由式(10-10a)得(7)计算模数 3.3按齿根弯曲强度设计由式(10-17)3.3.1确定计算参数(1)计算载荷系数。 =2.09(2)根据纵向重合度
15、 ,从机械设计第八版图10-28查得螺旋角影响系数(3)计算当量齿数。(4)查齿形系数。由表10-5查得(5)查取应力校正系数。由机械设计第八版表10-5查得(6)由机械设计第八版图10-24c查得小齿轮的弯曲疲劳强度极限 ;大齿轮的弯曲强度极限 ;(7)由机械设计第八版图10-18取弯曲疲劳寿命系数 ,;(8)计算弯曲疲劳许用应力。取弯曲疲劳安全系数S1.4,由机械设计第八版式(10-12)得(9)计算大、小齿轮的 并加以比较。=由此可知大齿轮的数值大。3.3.2设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数 大于由齿面齿根弯曲疲劳强度计算 的法面模数,取2,已可满足弯曲强度。但为了
16、同时满足接触疲劳强度,需按接触疲劳强度得的分度圆直径100.677mm 来计算应有的齿数。于是由取 ,则 取 3.4几何尺寸计算3.4.1计算中心距a=将中以距圆整为141mm.3.4.2按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正。3.4.3计算大、小齿轮的分度圆直径3.4.4计算齿轮宽度圆整后取.低速级取m=3;由 取圆整后取表 1高速级齿轮:名称代号计 算 公 式 小齿轮大齿轮模数m22压力角2020分度圆直径d=227=54=2109=218齿顶高齿根高齿全高h齿顶圆直径表 2低速级齿轮:名称代号计 算 公 式 小齿轮大齿轮模数m33压力角2020分度圆直径d=327=5
17、4=2109=218齿顶高齿根高齿全高h齿顶圆直径4.轴的设计4.1低速轴4.1.1求输出轴上的功率转速和转矩 若取每级齿轮的传动的效率,则4.1.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为圆周力 ,径向力 及轴向力 的4.1.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据机械设计第八版表15-3,取 ,于是得输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩, 查表考虑到转矩变化很小,故取 ,则:按照计算转矩应小于联轴器公称转矩的条件,查标准GB/T 5014-2003
18、或手册,选用LX4型弹性柱销联轴器,其公称转矩为 .半联轴器的孔径 ,故取 ,半联轴器长度 L=112mm ,半联轴器与轴配合的毂孔长度.4.1.4轴的结构设计(1)拟定轴上零件的装配方案 图4-1(2)根据轴向定位的要求确定轴的各段直径和长度1)根据联轴器为了满足半联轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3段的直径 ;左端用轴端挡圈,按轴端直径取挡圈直径D=65mm.半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故1-2 段的长度应比 略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工
19、作要求并根据,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承30313。其尺寸为dDT=65mm140mm36mm,故 ;而。3)取安装齿轮处的轴段4-5段的直径 ;齿轮的右端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为90mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 。齿轮的左端采用轴肩定位,轴肩高度 ,故取h=6mm ,则轴环处的直径 。轴环宽度 ,取。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取 低速轴的相关参数:
20、表4-1功率转速转矩1-2段轴长84mm1-2段直径50mm2-3段轴长40.57mm2-3段直径62mm3-4段轴长49.5mm3-4段直径65mm4-5段轴长85mm4-5段直径70mm5-6段轴长60.5mm5-6段直径82mm6-7段轴长54.5mm6-7段直径65mm(3)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=20mm12mm,键槽用键槽铣刀加工,长为L=63mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为。滚动轴承与轴的周向定
21、位是由过渡配合来保证的,此处选轴的直径公差为m6。4.2中间轴4.2.1求输出轴上的功率转速和转矩4.2.2求作用在齿轮上的力(1)因已知低速级小齿轮的分度圆直径为:(2)因已知高速级大齿轮的分度圆直径为:4.2.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取 ,于是得:轴的最小直径显然是安装轴承处轴的直径。图 4-24.2.4初步选择滚动轴承.(1)因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承,参照工作要求并根据,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承。其尺寸为dD*T=35mm72mm1
22、8.25mm,故,;(2)取安装低速级小齿轮处的轴段2-3段的直径 ;齿轮的左端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为95mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 。齿轮的右端采用轴肩定位,轴肩高度,故取h=6mm,则轴环处的直径。轴环宽度,取。(3)取安装高速级大齿轮的轴段4-5段的直径齿轮的右端与右端轴承之间采用套筒定位。已知齿轮轮毂的宽度为56mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。 4.2.5轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=22mm14mm。键槽用键槽铣刀加工,长为63mm
23、,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。中间轴的参数:表4-2功率10.10kw转速362.2r/min转矩263.61-2段轴长29.3mm1-2段直径25mm2-3段轴长90mm2-3段直径45mm3-4段轴长12mm3-4段直径57mm4-5段轴长51mm4-5段直径45mm4.3高速轴4.3.1求输出轴上的功率转速和转矩若取每级齿轮的传动的效率,则4.3.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直
24、径为4.3.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取 ,于是得:输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩 , 查表 ,考虑到转矩变化很小,故取 ,则:按照计算转矩 应小于联轴器公称转矩的条件,查标准GB/T 5014-2003 或手册,选用LX2型弹性柱销联轴器,其公称转矩为 .半联轴器的孔径 ,故取 ,半联轴器长度 L=82mm ,半联轴器与轴配合的毂孔长度.4.4轴的结构设计4.4.1拟定轴上零件的装配方案图4-34.4.2根据轴向定位的要求确定轴
25、的各段直径和长度1)为了满足半联 轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3 段的直径 ;左端用轴端挡圈,按轴端直径取挡圈直径D=45mm .半联轴器与轴配合的毂孔长度 ,为了保证轴端挡圈只压在半联轴器上 而不压在轴的端面上,故 段的长度应比 略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要求并根据 ,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承。其尺寸为d*D*T=45mm*85mm*20.75mm,故 ;而 ,mm。3)取安装齿轮处的轴段4-5段,做成齿轮轴;已知齿轮轴轮毂的宽度为6
26、1mm,齿轮轴的直径为62.29mm。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取。 5)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按 查表查得平键截面b*h=14mm*9mm ,键槽用键槽铣刀加工,长为L=45mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。高速轴的参数
27、:表4-3功率10.41kw转速1460r/min转矩1-2段轴长80mm1-2段直径30mm2-3段轴长45.81mm2-3段直径42mm3-4段轴长45mm3-4段直径31.75mm4-5段轴长99.5mm4-5段直径48.86mm5-6段轴长61mm5-6段直径62.29mm6-7段轴长26.75mm6-7段直径45mm5.齿轮的参数化建模5.1齿轮的建模(1)在上工具箱中单击按钮,打开“新建”对话框,在“类型”列表框中选择“零件”选项,在“子类型”列表框中选择“实体”选项,在“名称”文本框中输入“dachilun_gear”,如图5-1所示。图5-1“新建”对话框2取消选中“使用默认模
28、板”复选项。单击“确定”按钮,打开“新文件选项”对话框,选中其中“mmns_part_solid”选项,如图5-2所示,最后单击”确定“按钮,进入三维实体建模环境。图5-2“新文件选项”对话框(2)设置齿轮参数1在主菜单中依次选择“工具”“关系”选项,系统将自动弹出“关系”对话框。2在对话框中单击按钮,然后将齿轮的各参数依次添加到参数列表框中,具体内容如图5-4所示,完成齿轮参数添加后,单击“确定”按钮,关闭对话框。图5-3输入齿轮参数(3)绘制齿轮基本圆在右工具箱单击,弹出“草绘”对话框。选择FRONT 基准平面作为草绘平面,绘制如图5-4所示的任意尺寸的四个圆。(4)设置齿轮关系式,确定其
29、尺寸参数1按照如图5-5所示,在“关系”对话框中分别添加确定齿轮的分度圆直径、基圆直径、齿根圆直径、齿顶圆直径的关系式。2双击草绘基本圆的直径尺寸,将它的尺寸分别修改为、修改的结果如图5-6所示。 图5-4草绘同心圆 图5-5“关系”对话框 图5-6修改同心圆尺寸 图5-7“曲线:从方程”对话框(5)创建齿轮齿廓线1在右工具箱中单击按钮打开“菜单管理器”菜单,在该菜单中依次选择“曲线选项” “从方程” “完成”选项,打开“曲线:从方程”对话框,如图5-7所示。2在模型树窗口中选择坐标系,然后再从“设置坐标类型”菜单中选择“笛卡尔”选项,如图5-8所示,打开记事本窗口。3在记事本文件中添加渐开线
30、方程式,如图5-9所示。然后在记事本窗中选取“文件” “保存”选项保存设置。图5-8“菜单管理器”对话框 图5-9添加渐开线方程4选择图5-11中的曲线1、曲线2作为放置参照,创建过两曲线交点的基准点PNTO。参照设置如图5-10所示。曲 线1曲 线 2图5-11基准点参照曲线的选择 图5-10“基准点”对话框5如图5-12所示,单击“确定”按钮,选取基准平面TOP和RIGHT作为放置参照,创建过两平面交线的基准轴A_1,如图6-13所示。图5-12“基准轴”对话框 图5-13基准轴A_16如图5-13所示,单击“确定”按钮,创建经过基准点PNTO和基准轴A_1的基准平面DTM1,如图5-14
31、所示。5 5-15基准平面对话框 5-15基准平面DTM17如图5-16所示,单击“确定”按钮,创建经过基准轴A_1,并由基准平面DTM1转过“-90/z”的基准平面DTM2,如图5-17所示。图5-16“基准平面”对话框 图5-17基准平面DTM28镜像渐开线。使用基准平面DTM2作为镜像平面基准曲线,结果如图5-18所示。图5-18镜像齿廓曲线(6)创建齿根圆实体特征1在右工具箱中单击按钮打开设计图标版。选择基准平面FRONT作为草绘平面,接收系统默认选项放置草绘平面。2在右工具箱中单击按钮打开“类型”对话框,选择其中的“环”单选按钮,然后在工作区中选择图5-19中的曲线1作为草绘剖面。再
32、图标中输入拉伸深度为“b”,完成齿根圆实体的创建,创建后的结果如图5-20所示。图5-19草绘的图形 5-20拉伸的结果(7)创建一条齿廓曲线1在右工具箱中单击按钮,系统弹出“草绘”对话框,选取基准平面FRONT作为草绘平面后进入二维草绘平面。2在右工具箱单击按钮打开“类型”对话框,选择“单个”单选按钮,使用和并结合绘图工具绘制如图5-21所示的二维图形。图 5-21 草绘曲线图 5-22显示倒角半径3打开“关系”对话框,如图5-22所示,圆角半径尺寸显示为“sd0”,在对话框中输入如图5-23所示的关系式。图5-23“关系“对话框(8)复制齿廓曲线1在主菜单中依次选择“编辑” “特征操作”选
33、项,打开“菜单管理器”菜单,选择其中的“复制”选项,选取“移动”复制方法,选取上一步刚创建的齿廓曲线作为复制对象。图5-24依次选取的 菜单2选取“平移”方式,并选取基准平面FRONT作为平移参照,设置平移距离为“B”,将曲线平移到齿坯的另一侧。图5-25输入旋转角度3继续在“移动特征”菜单中选取“旋转”方式,并选取轴A_1作为旋转复制参照,设置旋转角度为“asin(2*b*tan(beta/d)”,再将前一步平移复制的齿廓曲线旋转相应角度。最后生成如图5-26所示的另一端齿廓曲线。图5-26创建另一端齿廓曲线(9)创建投影曲线1在工具栏内单击按钮,系统弹出“草绘”对话框。选取“RIGUT”面
34、作为草绘平面,选取“TOP”面作为参照平面,参照方向为“右”,单击“草绘”按钮进入草绘环境。2绘制如图5-27所示的二维草图,在工具栏内单击按钮完成草绘的绘制。图5-27绘制二维草图3主菜单中依次选择“编辑” “投影”选项,选取拉伸的齿根圆曲面为投影表面,投影结果如下图5-28所示。图5-28投影结果(10)创建第一个轮齿特征1在主菜单上依次单击“插入” “扫描混合”命令,系统弹出“扫描混合”操控面板,如图5-29所示。2在“扫描混合”操控面板内单击“参照”按钮,系统弹出“参照”上滑面板,如图6-30所示。图5-29 “扫描混合”操作面板 图5-30“参照”上滑面板3在“参照”上滑面板的“剖面
35、控制”下拉列表框内选择“垂直于轨迹”选项,在“水平/垂直控制”下拉列表框内选择“垂直于曲面”选项,如图5-30示。4在绘图区单击选取分度圆上的投影线作为扫描混合的扫引线,如图5-31示。扫描引线图5-31选取扫描引线5在“扫描混合”操作面板中单击“剖面”按钮,系统弹出“剖面”上滑面板,在上方下拉列表框中选择“所选截面”选项,如图5-32所示。图5-32“剖面”上滑面板 图5-33 选取截面6在绘图区单击选取“扫描混合”截面,如图5-33所示。7在“扫描混合”操控面板内单击按钮完成第一个齿的创建,完成后的特征如图5-34所示。图5-34完成后的轮齿特征 图5-35“选择性粘贴“对话框(11)阵列
36、轮齿1单击上一步创建的轮齿特征,在主工具栏中单击按钮,然后单击按钮,随即弹出“选择性粘贴”对话框,如图5-35所示。在该对话框中勾选“对副本应用移动/旋转变换”,然后单击“确定”按钮。图5-36 旋转角度设置 图5-37复制生成的第二个轮齿2单击复制特征工具栏中的“变换”,在“设置”下拉菜单中选取“旋转”选项,“方向参照”选取轴A_1,可在模型数中选取,也可以直接单击选择。输入旋转角度“360/z”,如图6-36所示。最后单击按钮,完成轮齿的复制,生成如图6-37所示的第2个轮齿。3在模型树中单击刚刚创建的第二个轮齿特征,在工具栏内单击按钮,或者依次在主菜单中单击“编辑” “阵列”命令,系统弹
37、出“阵列”操控面板,如图6-38所示。图5-38 “阵列”操控面板图5-39 完成后的轮齿 图5-40齿轮的最终结构4在“阵列”操控面板内选择“轴”阵列,在绘图区单击选取齿根园的中心轴作为阵列参照,输入阵列数为“88”偏移角度为“360/z”。在“阵列”操控面板内单击按钮,完成阵列特征的创建,如图5-39所示。5最后“拉伸”、“阵列”轮齿的结构,如图5-40所示致谢本论文是在ee老师的悉心指导下完成的。e老师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。不仅使我树立了远大的学术目标、掌握了基本的研
38、究方法,后文是被我人为屏蔽掉了,想要原版吗?小伙伴,在第2章电机选择CAD图里找我联系方式吧,还使我明白了许多待人接物与为人处世的道理。本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血。在此,谨向e老师表示崇高的敬意和衷心的感谢! 本论文的顺利完成,离不开各位老师、同学和朋友的关心和帮助。感谢CAD培训中心老师的指导和帮助。参考文献1王定.矿用小绞车M.北京:煤炭工业出版社,1981.2程居山.矿山机械M.徐州:中国矿业大学出版社,2005.8.3王洪欣,李木,刘秉忠.机械设计工程学M.徐州;中国矿业大学出版社,2001.4唐大放,冯晓宁,杨现卿. 机械设计工程学M.徐
39、州;中国矿业大学出版社,2001.5成大先.机械设计手则M.北京;化学工业出版社,2002.6寿楠椿,弹性薄板夸曲M.北京;高等出版社.1987.7刘鸿文.材料力学M. 北京;高等出版社.2004.8夏荣海,赫玉深.矿井提升设备M. 徐州:中国矿业大学出版社,1987.9国家发展和改革委员会.调度绞车M.北京:机械工业出版社 ,2007. 10编委会,新编机械设计知识百科-常用技术资料、计算方法、标准数据速查手册M.北京工业出版社,2000.11李洁,最新国内外起重机械使用技术性能及安全管理规章制度实务全书M.北京:机械工业出版社,2001.12编委会,煤矿机械设备选型、安装、检修维护技术守则M.北京:机械工业出版社,2003.13李洁,煤矿机械设备设计方法、机械制图、制造加工与故障排除实用手册M.北京:机械工业出版社,2005.14于文景、李富群,现代化煤矿机械设备安装调试、运行监测、故障诊断、维护保养与标准规范全书M.北京:机械工业出版社,2003.15编委会,煤矿机械设备选型安装检修维护技术手册M.北京:机械工业出版社,2001.16 罗名佑.行星齿轮传动M.北京:高等教育出版社,1984.17 吴宗泽,罗圣国.机械设计课程设计手册M. 第五版.北京:高等教育出版社,2006.18 孙恒,陈作模,葛文杰.机械原理M. 第七版.北京:高等教育出版社,2006.19 濮
限制150内