三章节控制系统数学描述与建模.ppt





《三章节控制系统数学描述与建模.ppt》由会员分享,可在线阅读,更多相关《三章节控制系统数学描述与建模.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三章节控制系统数学描述与建模 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望按系统性能分:线性系统和非线性系统;连续系统和离散系统;定常系统和时变系统;确定系统和不确定系统。1、线性连续系统:用线性微分方程式来描述,如果微分方程的系数为常数,则为定常系统;如果系数随时间而变化,则为时变系统。今后我们所讨论的系统主要以线性定常连续系统为主。2、线性定常离散系统:离散系统指系统的某处或多处的信号为脉冲序列或数码形式。这类系统用差分方程来描述。3、非线性系统:系统中有一
2、个元部件的输入输出特性为非线性的系统。第一节 系统的分类微分方程是控制系统模型的基础,一般来讲,利用机械学、电学、力学等物理规律,便可以得到控制系统的动态方程,这些方程对于线性定常连续系统而言是一种常系数的线性微分方程。如果已知输入量及变量的初始条件,对微分方程进行求解,就可以得到系统输出量的表达式,并由此对系统进行性能分析。通过拉氏变换和反变换,可以得到线性定常系统的解析解,这种方法通常只适用于常系数的线性微分方程,解析解是精确的,然而通常寻找解析解是困难的。MATLAB提供了ode23、ode45等微分方程的数值解法函数,不仅适用于线性定常系统,也适用于非线性及时变系统。第二节 线性定常连
3、续系统的微分方程模型例exp3_1.m电路图如下,R=1.4欧,L=2亨,C=0.32法,初始状态:电感电流为零,电容电压为0.5V,t=0时刻接入1V的电压,求0t15s时,i(t),vo(t)的值,并且画出电流与电容电压的关系曲线。对线性定常系统,式中s的系数均为常数,且a1不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示。num=b1,b2,bm,bm+1den=a1,a2,an,an+1注意:它们都是按s的降幂进行排列的。第三节 传递函数描述一、连续系统的传递函数模型连续系统的传递函数如下:零极点模型实际上是传
4、递函数模型的另一种表现形式,其原理是分别对原系统传递函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。v在MATLAB中零极点增益模型用z,p,K矢量组表示。即:vz=z1,z2,zmvp=p1,p2,.,pnvK=kv函数tf2zp()可以用来求传递函数的零极点和增益。二、零极点增益模型K为系统增益,zi为零点,pj为极点控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控制单元的和的形式。函数r,p,k=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微分单元的形式。向量b和a是按s的降幂排列的多项式系数。部分分式展开后,余数返回
5、到向量r,极点返回到列向量p,常数项返回到k。b,a=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。三、部分分式展开举例:传递函数描述 1)num=12,24,0,20;den=2 4 6 2 2;2)借助多项式乘法函数conv来处理:num=4*conv(1,2,conv(1,6,6,1,6,6);den=conv(1,0,conv(1,1,conv(1,1,conv(1,1,1,3,2,5);零极点增益模型:num=1,11,30,0;den=1,9,45,87,50;z,p,k=tf2zp(num,den)z=0 -6 -5p=-3.0000+4.0000i
6、 -3.0000-4.0000i -2.0000 -1.0000k=1结果表达式:部分分式展开:num=2,0,9,1;den=1,1,4,4;r,p,k=residue(num,den)p=0.0000+2.0000i 0.0000-2.0000i -1.0000k=2r=0.0000-0.2500i 0.0000+0.2500i -2.0000结果表达式:q状态方程与输出方程的组合称为状态空间表达式,又称为动态方程,经典控制理论用传递函数将输入输出关系表达出来,而现代控制理论则用状态方程和输出方程来表达输入输出关系,揭示了系统内部状态对系统性能的影响。第四节状态空间描述q在MATLAB中,
7、系统状态空间用(A,B,C,D)矩阵组表示。举例:系统为一个两输入两输出系统A=1 6 9 10;3 12 6 8;4 7 9 11;5 12 13 14;B=4 6;2 4;2 2;1 0;C=0 0 2 1;8 0 2 2;D=zeros(2,2);在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换。模型转换的函数包括:residue:传递函数模型与部分分式模型互换ss2tf:状态空间模型转换为传递函数模型ss2zp:状态空间模型转换为零极点增益模型tf2ss:传递函数模型转换为状态空间模型tf2zp:传递函数模型转换为零极点增益模型zp2ss:零极
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 章节 控制系统 数学 描述 建模

限制150内