勾股定理导学案(精品学案).doc
《勾股定理导学案(精品学案).doc》由会员分享,可在线阅读,更多相关《勾股定理导学案(精品学案).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课题名称:勾股定理(1)学习目标:1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。了解我国古代在勾股定理研究方面所取得的成就。 学习目标:经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。学习重点:勾股定理的内容及证明。学习难点:勾股定理的证明。自助探究11、2002年北京召开了被誉为数学界“奥运会”的国际数学家大会,这就是当时采用的会徽. 你知道这个图案的名字吗?你知道它的背景吗?你知道为什么会用它作为会徽吗?2、相传2500年前,古希腊的数学家毕达哥拉斯在朋友家做客时,发现朋友家用地砖铺成的地面中反映了直角
2、三角形三边的某种数量关系. 请同学们也观察一下,看看能发现什么? (1) 引导学生观察三个正方形之间的面积的关系;(2) 引导学生把面积的关系转化为边的关系.结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和.3、等腰直角三角形有上述性质,其它直角三角形也有这个性质吗?4、猜想:命题1 自助提升1、定理证明(1)赵爽利用弦图证明。显然4个 的面积中间小正方形的面积该图案的面积.即4 2c2,化简后得到 .(2)其他证明方法:教材72页 思考讨论完成2、在RtABC中,C=,AB=17,BC=8,求AC的长3、RtABC和以AB为边的正方形ABEF,ACB=90,AC=12,BC
3、=5,则正方形的面积是_4、(1) 已知RtABC中,C=90,BC=6,AC=8,求AB.(2) 已知RtABC中,A=90,AB=5,BC=6,求AC.(3) 已知RtABC中,B=90,a,b,c分别是A,B,C的对边,ca=34,b=15,求a,c及斜边高线h.5、如图1-1-4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和是多少?自助检测1一个直角三角形,两直角边长分别为3和4,下列说法正确的是 ( )2斜边长为25 B三角形的周长为25 C斜边长为5 D三角形面积为203一直角三角形的斜边长比一条直角边长多2,
4、另一直角边长为6,则斜边长为( )A4 B8 C10 D124直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为( )A6 B8 C D5、已知,如图1-1-5,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求CF CE 图1-1-5小结与反思这节课你学到了一些什么?你想进一步探究的问题是什么?教学反思 18.1 勾股定理(2)一、学习目标通过经历和体验,运用勾股定理解决一些实际问题的过程,进一步掌握勾股定理。重点:勾股定理的应用。难点:实际问题向数学问题的转化。二、自助探究1、一个门框的尺寸如图所示: (1) 若有一块长
5、3米,宽0.8米的薄木板,能否从门框内通过?(2) 若有一块长3米,宽1.5米的薄木板,能否从门框内通过?(3) 若有一块长3米,宽2.2米的薄木板,能否从门框内通过?分析:(3) 木板的宽2.2米大于1米,所以横着不能从门框内通过木板的宽2.2米大于2米,所以竖着不能从门框内通过因为对角线AC的长度最大,所以只能试试斜着能否通过所以将实际问题转化为数学问题小结:此题是将实际为题转化为数学问题,从中抽象出RtABC,并求出斜边AC的2、例2、如图,一个3米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5米如果梯子的顶端A沿墙下滑 0.5米,那么梯子底端B也外移0.5米吗?(计算结果
6、保留两位小数)分析:要求出梯子的底端B是否也外移0.5米,实际就是求BD的长,而BD=OD-OBOBDCACAOBOD3、一个大树高8米,折断后大树顶端落在离大树底端2米处,折断处离地面的高度是多少? 自助提升1、已知:ABC为等边三角形,ADBC于D,AD=6. 求AC的长.2、如果直角三角形的三边分别为3,5,a试求满足条件a的值?3、以知正三角形的边长为a,求的面积?自助检测1、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A、12 cm B、10 cm C、8 cm D、6 cm2、如图,在ABC中,ACB=900,AB=5cm,BC=3cm,
7、CDAB与D。求:(1)AC的长; (2)ABC的面积; (3)CD的长。 AB3、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是( )A、20cm; B、10cm; C、14cm; D、无法确定.4、若等腰直角三角形的斜边长为2,则它的直角边的长为 ,斜边上的高的长为 。5、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)来源:学#科#网6、小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?7、有一个水池,水面是一个
8、边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺。如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面。谁的深度和这根芦苇的长度分别是多少?小结与反思教后记 18.1 勾股定理(3)学习目标:1、熟练掌握勾股定理的内容 2、会用勾股定理解决简单的实际问题 3、利用勾股定理,能在数轴上表示无理数的点重点:会在数轴上表示(n为正整数)难点:综合运用自助探究 1、勾股定理的内容2、如图,已知长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则ABE的面积为() A、6cm2B、8cm2 C、10cm2 D、12cm2 3、1394,即 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 导学案 精品
限制150内