回归分析的基本思想及其初步应用第1课时.doc
《回归分析的基本思想及其初步应用第1课时.doc》由会员分享,可在线阅读,更多相关《回归分析的基本思想及其初步应用第1课时.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1 回归分析的基本思想及其初步(一)【学情分析】:教学对象是高二文科学生,学生已经初步学会用最小二乘法建立线性回归模型的知识,并能用所学知识解决一些简单的实际问题。回归分析是数理统计中的重要内容,在教学中,要结合实例进行相关性检验,理解只有两个变量相关性显著时,回归方程才具有实际意义。在起点低的班级中注重让学生参与实践,结合画图表的方法整理数据,鼓励学生通过收集数据,经历数据处理的过程,从而认识统计方法的特点,达到学习的目的。【教学目标】:(1)知识与技能:回忆线性回归模型与函数模型的差异,理解用最小二乘法求回归模型的步骤,了解判断两变量间的线性相关关系的强度相关系数。(2)过程与方法:本
2、节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程。(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。【教学重点】: 1、了解线性回归模型与函数模型的差异; 2、了解两变量间的线性相关关系的强度相关系数。【教学难点】:1、了解线性回归模型与一次函数模型的差异;2、了解偏差平方和分解的思想。【课前准备】:课件【教学过程设计】:教学环节教学活动设计意图一、创设情境问题一:一般情况下,体重与身高有一定的关系,通常个子较高的人体重比较大,但这是否一定正确?(是否存在普遍性
3、)提出问题,引导学生判断体重与身高之间的关系(函数关系、相关关系)(学生思考、讨论。)问题二:统计方法解决问题的基本过程是什么?提出问题,引导学生回忆用最小二乘法求回归直线方程的方法。(由学生回忆、叙述)回归分析的基本过程:画出两个变量的散点图;判断是否线性相关求回归直线方程(利用最小二乘法)并用回归直线方程进行预报复习回归分析用于解决什么样的问题。复习回归分析的解题步骤二、例题选讲问题三:思考例1:从某大学中随机选取8名女大学生,其身高和体重数据如表所示。求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。编号12345678身高/cm16516515
4、7170175165155170体重/kg4857505464614359题目中表达了哪些信息?师:读例1的要求,引导学生理解例题含义。(例题含义:数据体重与身高之间是一种不确定性的关系求出以身高为自变量x,体重为因变量y的回归方程。由方程求出当x = 172时,y的值。生:思考、讨论、叙述自己的理解,归纳出题目中的信息。根据以前所学的知识,让学生自己动手求出回归方程求解过程如下:画出散点图,判断身高x与体重y之间存在什么关系(线性关系)?列表求出相关的量,并求出线性回归方程代入公式有所以回归方程为利用回归方程预报身高172cm的女大学生的体重约为多少?当时,引导学生复习总结求线性回归方程的步
5、骤:第一步:作散点图第二步:求回归方程第三步:代值计算复习统计方法解决问题的基本过程。学生动手画散点图,老师用EXCEL的作图工作演示,并引导学生找出两个变量之间的关系。 学生经历数据处理的过程,并借助EXCEL的统计功能鼓励学生使用计算器或计算机等现代工具来处理数据。 三、探究新知问题四:身高为172cm的女大学生的体重一定是60.316kg吗?(不一定,但一般可以认为她的体重在60.316kg左右.)师:提出问题,引导学生比较函数模型与线性回归模型的不同,并引出相关系数的作用。生:思考、讨论、解释解释线性回归模型与一次函数的不同从散点图可观察出,女大学生的体重和身高之间的关系并不能用一次函
6、数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 问题五:如何衡
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 分析 基本 思想 及其 初步 应用 课时
限制150内