2018年度高考~北京卷理科数学(含内容答案).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018年度高考~北京卷理科数学(含内容答案).doc》由会员分享,可在线阅读,更多相关《2018年度高考~北京卷理科数学(含内容答案).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.绝密启用前2018 年普通高等学校招生全国统一考试数 学(理) (北京卷)本试卷共 5 页,150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。学科:网第一部分(选择题 共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知集合 A=x|x|f(0)对任意的 x(0,2都成立,则 f(x)在0,2上是增函数”为假命题的一个函数是_(14)已知椭圆 ,双曲线 若双曲线 N 的两条渐近线与椭圆 M 的四21(0)xyMab: 21xyNmn:个交点及椭圆
2、M 的两个焦点恰为一个正六边形的顶点,则椭圆 M 的离心率为_;双曲线 N 的离心率为_三、解答题共 6 小题,共 80 分。解答应写出文字说明,演算步骤或证明过程。学科网(15) (本小题 13 分)在ABC 中,a=7,b=8 ,cosB= 17()求A;()求 AC 边上的高(16) (本小题 14 分)如图,在三棱柱 ABC- 中, 平面 ABC,D,E,F,G 分别为 ,AC, , 的中点,1ABC11A1C1BAB=BC= ,AC= =25.()求证:AC平面 BEF;()求二面角 B-CD-C1 的余弦值;()证明:直线 FG 与平面 BCD 相交(17) (本小题 12 分)电
3、影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型 第一类 第二类 第三类 第四类 第五类 第六类电影部数 140 50 300 200 800 510好评率 0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值假设所有电影是否获得好评相互独立()从电影公司收集的电影中随机选取 1 部,求这部电影是获得好评的第四类电影的概率;()从第四类电影和第五类电影中各随机选取 1 部,估计恰有 1 部获得好评的概率;()假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ ”表示第 k 类电影1k得到人们喜欢, “ ”表示第
4、k 类电影没有得到人们喜欢(k=1,2,3,4,5,6) 写出方差 ,0k 1D, , , , 的大小关系2D345D6(18) (本小题13分)设函数 = ()fx2(41)3axaex()若曲线y= f(x)在点(1, )处的切线与 轴平行,求a;()fx.()若 在x=2处取得极小值,求a的取值范围()f(19) (本小题 14 分)已知抛物线 C: =2px 经过点 (1,2) 过点 Q(0,1)的直线 l 与抛物线 C 有两个不同的交点 A,B ,2yP且直线 PA 交 y 轴于 M,直线 PB 交 y 轴于 N()求直线 l 的斜率的取值范围;()设 O 为原点, , ,求证: 为
5、定值QOQ1(20) (本小题14分)设 n 为正整数,集合 A= 对于集合 A 中的任意元素12|(,),0,1,2nttkn 和 ,记12(,)nx 12(,nyM( )= , 122|)(|)(|)nnxxyxy()当 n=3 时,若 , ,求 M( )和 M( )的值;(,0,1),()当 n=4 时,设 B 是 A 的子集,且满足:对于 B 中的任意元素 ,当 相同时,M( )是,,奇数;当 不同时,M( )是偶数求集合 B 中元素个数的最大值;,,()给定不小于 2 的 n,设 B 是 A 的子集,且满足:对于 B 中的任意两个不同的元素 ,,M( )=0写出一个集合 B,使其元素
6、个数最多,并说明理由学科&网,.绝密启用前2018 年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题1A 2D 3B 4D 5C 6C 7C 8D二、填空题9 10 11 12363na122313y=sinx(答案不唯一) 14 1;三、解答题(15) (共 13 分)解:()在ABC 中,cosB= ,B( ,),sinB= 1722431cos7B由正弦定理得 = ,sin A= siniabAsinA8433B( , ),A(0, ),A= 22.()在ABC 中,sinC=sin(A+ B)=sinAcos B+sinBcosA= = 3143()271如图所示,在ABC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年度 高考 北京 理科 数学 内容 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内