高中数学函数与导数常考题型整理归纳(共6页).doc
《高中数学函数与导数常考题型整理归纳(共6页).doc》由会员分享,可在线阅读,更多相关《高中数学函数与导数常考题型整理归纳(共6页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学函数与导数常考题型整理归纳题型一:利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f(x)ln xa(1x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求实数a的取值范围.解(1)f(x)的定义域为(0,),f(x)a.若a0,则f(x)0,所以f(x)在(0,)上单调递增.若a0,则当x时,f(x)0;当x时,f(x)0,所以f(x)在上单调递增,在上单调递减.综上,知
2、当a0时,f(x)在(0,)上单调递增;当a0时,f(x)在上单调递增,在上单调递减.(2)由(1)知,当a0时,f(x)在(0,)上无最大值;当a0时,f(x)在x处取得最大值,最大值为fln aln aa1.因此f2a2等价于ln aa10.令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)0;当a1时,g(a)0.因此,实数a的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数
3、的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln aa10,即(x22)ex0,因为ex0,所以x220,解得x0,所以x2(a2)xa0对x(1,1)都成立,即a(x1)对x(1,1)都成立.令y(x1),则y10.所以y(x1)在(1,1)上单调递增,所以y0时,解不等式f(x)0;(2)当a0时,求整数t的所有值,使方程f(x)x2在t,t1上有解.解(1)因为ex0,(ax2x)ex0.ax2x0.又因为a0,所以不等式化为x0.所以不等式f(x)0的解集为.(2)当a0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 函数 导数 题型 整理 归纳
限制150内