高中数学典型例题解析立体几何(共24页).doc
《高中数学典型例题解析立体几何(共24页).doc》由会员分享,可在线阅读,更多相关《高中数学典型例题解析立体几何(共24页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学典型例题分析第六章 立体几何初步6.1 两条直线之间的位置关系一、知识导学1. 平面的基本性质.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两条直线的位置关系,包括:相交、平行、异面.3. 公理4:平行于同一条直线
2、的两条直线平行.定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4. 异面直线.异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离. 5. 反证法.会用反证法证明一些简单的问题.二、疑难知识导析1异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3异面直线的公垂线要求和两条异面直线垂直并且相交,4异面直
3、线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲例1在正方体ABCD-ABCD中,O是底面ABCD的中心,M、N分别是棱DD、DC的中点,则直线OM( ).A .是AC和MN的公垂线. B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC. D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A. 例2如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,
4、且,求证:直线EG,FH,AC相交于一点. 错解:证明:、F分别是AB,AD的中点,BD,EF=BD,又,GHBD,GH=BD, 四边形EFGH是梯形,设两腰EG,FH相交于一点T, ,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,BD,EF=BD,又,GHBD,GH=BD, 四边形EFGH是梯形,设两腰EG,FH相交于一点T, 平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,直线EG,FH,AC相交于一点T.例3判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b都平行.
5、错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题 例4 如图,在四边形ABCD中,已知ABCD,直线AB,BC,AD,DC分别与平面相交于点E,G,H,F求证:E,F,G,H四点必定共线(在同一条直线上)分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线证明 AB/CD, AB,CD确定一个平面又AB E,AB, E,E,即 E为平面与的一个公共点同理可证F,G,H均为平面与的公共点 两个平面有公共点,它们有且只有一条通过公共点的公共直线, E,F,G,H四点必定共线点评:在立体几何的问题中,
6、证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论例5如图,已知平面,且设梯形ABCD中,ADBC,且AB,CD,求证:AB,CD,共点(相交于一点) 分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面,的交线,因此,只要证明M,且M即可证明: 梯形ABCD中,ADBC,AB,CD是梯形ABCD的两条腰 AB,CD必定相交于一点,设 AB CDM又 AB,CD, M,且M M又 , M,即 AB,CD,共点点评:证明多条直线共点时,与证明多点共线是一样的 例6已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,
7、b,c,d共面 分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内证明 1若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A 直线d和A确定一个平面 又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G A,E,A,Ea, a同理可证 b,c a,b,c,d在同一平面内2当四条直线中任何三条都不共点时,如图 这四条直线两两相交,则设相交直线a,b确定一个平面设直线c与a,b分别交于点H,K,则 H,K又 H,Kc, c同理可证 d a,b
8、,c,d四条直线在同一平面内点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内本题最容易忽视“三线共点”这一种情况因此,在分析题意时,应仔细推敲问题中每一句话的含义 例7 在立方体ABCDA1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度? 解:(1)连结BD, 交AC于点O .(2)BD1和AC是异面直线.(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则MOA或其补角即为异面直线AC和BD1所
9、成的角.不难得到MAMC,而O为AC的中点,因此MOAC,即MOA90,异面直线BD1与AC所成的角为90.例8 已知:在直角三角形ABC中,A为直角,PA平面ABC,BDPC,垂足为D,求证:ADPC证明:PA 平面ABCPABA又BAAC BA平面PACAD是BD在平面PAC内的射影又BDPC ADPC.(三垂线定理的逆定理)四、典型习题导练1如图, P是ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( ) A.2对 B.3对 C.4对 D.6对2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小
10、为 3. 在棱长为a的正方体ABCDA1B1C1D1中,体对角线DB1与面对角线BC1所成的角是 ,它们的距离是 .4.长方体中,则所成角的大小为_ _.5.关于直角AOB在定平面内的射影有如下判断:可能是0的角;可能是锐角;可能是直角;可能是钝角;可能是180的角. 其中正确判断的序号是_.(注:把你认为正确的序号都填上). 6在空间四边形ABCD中,ABCD,AH平面BCD,求证:BHCD 7如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P点不重合求证:EF和DH是异面直线6.2直线与平面之间的位置关系一、知识导学1. 掌握空间直线与平面的三种位置关系(
11、直线在平面内、相交、平行).2. 直线和平面所成的角,当直线与平面平行或在平面内时所成的角是,当直线与平面垂直时所成的角是9,当直线与平面斜交时所成的角是直线与它在平面内的射影所成的锐角.3. 掌握直线与平面平行判定定理(如果平面外的一条直线和平面内的一条直线平行,那么这条直线和平面平行)和性质定理(如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行).4. 直线与平面垂直的定义是:如果一条直线和一个平面内所有直线垂直,那么这条直线和这个平面垂直;掌握直线与平面垂直的判定定理(如果一条直线和平面内的两条相交直线都垂直,那么这条直线垂直于这个平面)和性质定理(如
12、果两条直线同垂直于一个平面,那么这两条直线平行).5. 直线与平面的距离(一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离).6. 三垂线定理(在平面内的一条直线,如果和这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直)、逆定理(在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直).7. 从平面外一点向这个平面所引的垂线段和斜线段中:射影相等的两条斜线段相等,射影较长的斜线段也较长;相等的斜线段的射影相等,较长的斜线段的射影也较长;垂线段比任何一条斜线段都短.二、疑难知识导析1.斜线与平面所成的角
13、关键在于找射影,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.2.在证明平行时注意线线平行、线面平行及面面平行判定定理和性质定理的反复运用.3.在证明垂直时注意线线垂直、线面垂直及面面垂直判定定理和性质定理的反复运用,同时还要注意三垂线定理及其逆定理的运用.要注意线面垂直的判定定理中的“两条相交直线”,如果用“无数”或“两条”都是错误的.4.直线与平面的距离一般是利用直线上某一点到平面的距离.“如果在平面的同一侧有两点到平面的距离(大于0)相等,则经过这两点的直线与这个平面平行.”要注意“同一侧”、“距离相等”.三、经典例题导讲例1已知平面平面,直线平面,点P直线,平
14、面、间的距离为8,则在内到点P的距离为10,且到的距离为9的点的轨迹是( )A.一个圆 B.四个点 C.两条直线 D .两个点 错解:A.错因:学生对点线距离、线线距离、面面距离的关系掌握不牢.正解:B. 例2 a和b为异面直线,则过a与b垂直的平面( ). A有且只有一个 B一个面或无数个 C可能不存在 D可能有无数个错解:A.错因:过a与b垂直的平面条件不清.正解:C.例3由平面外一点P引平面的三条相等的斜线段,斜足分别为A,B,C,O为ABC的外心,求证:.错解:因为O为ABC的外心,所以OAOBOC,又因为PAPBPC,PO公用,所以POA,POB,POC都全等,所以POAPOBPOC
15、,所以.错因:上述解法中POAPOBPOCRT,是对的,但它们为什么是直角呢?这里缺少必要的证明.正解:取BC的中点D,连PD、OD,例4如图,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M点的最短路线长为,设这条最短路线与C1C的交点为N,求: (1)该三棱柱的侧面展开图的对角线长;(2)PC和NC的长;(3)平面NMP和平面ABC所成二面角(锐角)的大小(用反三角函数表示)错因:(1)不知道利用侧面BCC1 B1展开图求解,不会找 的线段在哪里;(2)不会找二面角的平面角.正解:(1)正三棱柱ABC-A1B1C1的
16、侧面展开图是一个长为9,宽为4的矩形,其对角线长为(2)如图,将侧面BC1旋转使其与侧面AC1在同一平面上,点P运动到点P1的位置,连接MP1 ,则MP1就是由点P沿棱柱侧面经过CC1到点M的最短路线.设PC,则P1C,在(3)连接PP1(如图),则PP1就是平面NMP与平面ABC的交线,作NH于H,又CC1平面ABC,连结CH,由三垂线定理的逆定理得,.例5 P是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证:PC 平面BDQ 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了证明:如图所示,连结AC ,交BD 于点O ,四边形ABCD
17、是平行四边形.AO=CO ,连结OQ ,则OQ 在平面BDQ 内,且OQ 是 的中位线,PCOQ PC 在平面BDQ 外,PC平面BDQ 点评:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行.例6 在正方体A1B1C1D1ABCD中,E、F分别是棱AB、BC的中点,O是底面ABCD的中点求证:EF垂直平面BB1O证明: 如图,连接AC、BD,则O为AC和BD的交点E、F分别是AB、BC的中点,EF是ABC的中位线,EFACB1B平面ABCD,AC平面ABCDACB1B,由正方形ABCD知:ACBO,又BO与BB1是平面BB1O上的两条相交直线,AC平面BB1O(线
18、面垂直判定定理)ACEF, EF平面BB1O 例7如图,在正方体ABCD-A1B1C1D1 中,E 是BB1 的中点,O 是底面正方形ABCD 的中心,求证:OE 平面ACD1 分析:本题考查的是线面垂直的判定方法根据线面垂直的判定方法,要证明OE 平面ACD1 ,只要在平面ACD1 内找两条相交直线与OE 垂直证明:连结B1D 、A!D 、BD ,在B1BD 中,E,O 分别是B1B 和DB 的中点,EOB1D B1A1 面AA1D1D ,DA1 为DB1 在面AA1D1D 内的射影又AD1A1D ,AD1DB1 同理可证B1DD1C 又AD1,AD1,D1C 面ACD1 ,B1D 平面AC
19、D1 B1DOE ,OE 平面ACD1 点评:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用例8如图,正方体ABCD-A1B1C1D1中,点N在BD上, 点M在B1C上,且CM=DN,求证:MN平面AA1B1B.证明:证法一.如图,作MEBC,交BB1于E,作NFAD,交AB于F,连EF则EF平面AA1B1B.ME=NF又MEBCADNF,MEFN为平行四边形,MNEF. MN平面AA1B1B.证法二.如图,连接并延长CN交BA延长线于点P,连B1P,则B1P平
20、面AA1B1B.,又CM=DN,B1C=BD,B1P. B1P平面AA1B1B, MN平面AA1B1B.证法三.如图,作MPBB1,交BC于点P,连NP.MPBB1,BD=B1C,DN=CM, NPCDAB.面MNP面AA1B1B.MN平面AA1B1B.四、典型习题导练1设a ,b 是空间两条垂直的直线,且b平面 则在“a平面 ”、“a ”、“a与相交”这三种情况中,能够出现的情况有( )A0个B1C2个D3个2一个面截空间四边形的四边得到四个交点,如果该空间四边形仅有一条对角线与这个截面平行,那么此四个交点围成的四边形是()A梯形B任意四边形C平行四边形D菱形3若一直线和一个平面平行,夹在直
21、线和平面间的两条线段相等,那么这两条线段的位置关系是( )A平行B相交C异面D平行、相交或异面4空间四边形的边AB 、BC 、CD 、DA 的中点分别是E 、F 、G 、H ,若两条对角线BD 、AC 的长分别为2和4,则EG2+HF2 的值( )A5B10 C20 D405点P 、Q 、R 、S 分别是空间四边形ABCD 四边的中点,则:当AC 时,四边形PQRS 是_形;当AC=BD 时,四边形PQRS 是_形6已知两个全等的矩形ABCD 和ABEF 不在同一平面内,M 、N 分别在它们的对角线AC ,BF 上,且CM=BN , 求证:MN 平面BCE 7.如图,已知平行六面体ABCD-A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 典型 例题 解析 立体几何 24
限制150内