高中数学选择题解题方法总结(共17页).doc
《高中数学选择题解题方法总结(共17页).doc》由会员分享,可在线阅读,更多相关《高中数学选择题解题方法总结(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上选择题解题策略解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件。选择题不设中间分,一步失误,造成错选,全题无分。所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。迅速是赢得时间获取高分的必要条件。高考中考生不适应的试题,致使“超时失分”是造成低分的一大因素。对于选择题的解答,速度越快越好,高考要求每道选择题在13分钟内解完。一般地,解答选择题的策略是: 熟练掌握各种基本题型的一般解法。 结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
2、 挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。一、常用方法1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支对号入座作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法. 直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的个性,用简便方法巧解选择题,是建在扎实掌握三基的基础上,否则一味求快则会快中出错. 例1若sinxcosx,则x的取
3、值范围是( ) (A)x|2kx2k,kZ (B) x|2kx2k,kZ (C) x|kxk,kZ (D) x|kxk,kZ 解:(直接法)由sinxcosx得cosxsinx0,即cos2x0,所以:k2xk,选D. 另解:数形结合法:由已知得|sinx|cosx|,画出y=|sinx|和y=|cosx|的图象,从图象中可知选D. 例2设f(x)是(,)是的奇函数,f(x2)f(x),当0x1时,f(x)x,则f(7.5)等于( ) (A) 0.5 (B) 0.5 (C) 1.5 (D) 1.5 解:由f(x2)f(x)得f(7.5)f(5.5)f(3.5)f(1.5)f(0.5),由f(x
4、)是奇函数,得 f(0.5)f(0.5)0.5,所以选B. 也可由f(x2)f(x),得到周期T4,所以f(7.5)f(0.5)f(0.5)0.5. 例3七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A) 1440 (B) 3600 (C) 4320 (D) 4800 解一:(用排除法)七人并排站成一行,总的排法有种,其中甲、乙两人相邻的排法有2种.因此,甲、乙两人必需不相邻的排法种数有:23600,对照后应选B; 解二:(用插空法)3600. 例2高考题)设f(x)是定义在(,+)的奇函数,f(x2)f(x),当0x1时,f(x)x,则f(7.5)等于_。 A.
5、 0.5 B. 0.5 C. 1.5 D. 1.5解:由f(x2)f(x)得f(7.5)f(5.5)f(3.5)f(1.5)f(0.5),由f(x)是奇函数得f(0.5)f(0.5)0.5,所以选B。也可由f(x2)f(x),得到周期T4,所以f(7.5)f(0.5)f(0.5)0.5。例3某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为( )解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 故选A。例4有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线l有且仅有一个平面与垂直;异面直线a、b不垂直,那么过a的任一个平面与b都不垂
6、直。其中正确命题的个数为( )A0B1C2D3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D。例5已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于( )A11B10C9D16解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|11,故选A。例6已知在0,1上是的减函数,则a的取值范围是( )A(0,1)B(1,2)C(0,2)D2,+)解析:a0,y1=2-ax是减函数, 在
7、0,1上是减函数。a1,且2-a0,1atancot(),则( )A(,)B(,0)C(0,)D(,)解析:因,取=代入sintancot,满足条件式,则排除A、C、D,故选B。例8、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( )A24B84C72D36解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2S1=12,a3=a1+2d= 24,所以前3n项和为36,故选D。(2)特殊函数例9、如果奇函数f(x) 是3,7上是增函数且最小值为5,那么f(x)在区间7,3上是( )A.增函数且最小值为5B.减函数且最小值是
8、5C.增函数且最大值为5D.减函数且最大值是5解析:构造特殊函数f(x)=x,虽然满足题设条件,并易知f(x)在区间7,3上是增函数,且最大值为f(-3)=-5,故选C。例10、定义在R上的奇函数f(x)为减函数,设a+b0,给出下列不等式:f(a)f(a)0;f(b)f(b)0;f(a)+f(b)f(a)+f(b);f(a)+f(b)f(a)+f(b)。其中正确的不等式序号是( )ABCD解析:取f(x)= x,逐项检查可知正确。故选B。(3)特殊数列例11、已知等差数列满足,则有()A、B、C、D、解析:取满足题意的特殊数列,则,故选C。(4)特殊位置例12、过的焦点作直线交抛物线与两点,
9、若与的长分别是,则 ( )A、 B、 C、 D、 解析:考虑特殊位置PQOP时,所以,故选C。例13、向高为的水瓶中注水,注满为止,如果注水量与水深的函数关系的图象如右图所示,那么水瓶的形状是 ( )解析:取,由图象可知,此时注水量大于容器容积的,故选B。(5)特殊点例14、设函数,则其反函数的图像是( )A、B、C、D、解析:由函数,可令x=0,得y=2;令x=4,得y=4,则特殊点(2,0)及(4,4)都应在反函数f1(x)的图像上,观察得A、C。又因反函数f1(x)的定义域为,故选C。(6)特殊方程例15、双曲线b2x2a2y2=a2b2 (ab0)的渐近线夹角为,离心率为e,则cos等
10、于( )AeBe2CD解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察。取双曲线方程为=1,易得离心率e=,cos=,故选C。(7)特殊模型例16、如果实数x,y满足等式(x2)2+y2=3,那么的最大值是( )ABCD解析:题中可写成。联想数学模型:过两点的直线的斜率公式k=,可将问题看成圆(x2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得愈简单愈好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特
11、例法解答的约占30左右。3、筛选法从题设条件出发,运用定理、性质、公式推演,根据四选一的指令,逐步剔除干扰项,从而得出正确的判断. 例1已知ylog(2ax)在0,1上是x的减函数,则a的取值范围是( ) (A)(0,1) (B)(1,2) (C)(0,2) (D) 2,+ 解: 2ax是在0,1上是减函数,所以a1,排除答案A、C;若a2,由2ax0得x1,这与x0,1不符合,排除答案D.所以选B. 例2过抛物线y4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是( ) (A) y2x1 (B) y2x2 (C) y2x1 (D) y2x2 解:(筛选法)由已知可知轨
12、迹曲线的顶点为(1,0),开口向右,由此排除答案A、C、D,所以选B; 另解:(直接法)设过焦点的直线yk(x1),则,消y得: kx2(k2)xk0,中点坐标有,消k得y2x2,选B. 筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40. 例3(高考题)已知ylog(2ax)在0,1上是x的减函数,则a的取值范围是_。 A. 0,1 B. (1,2 C. (0,2)
13、 D. 2,+) 解: 2ax是在0,1上是减函数,所以a1,排除答案A、C;若a2,由2ax0得x1,排除B,C,D,故应选A。例5、原市话资费为每3分钟0.18元,现调整为前3分钟资费为0.22元,超过3分钟的,每分钟按0.11元计算,与调整前相比,一次通话提价的百分率( )A不会提高70% B会高于70%,但不会高于90%C不会低于10% D高于30%,但低于100%解析:取x4,y100%8.3%,排除C、D;取x30,y 100%77.2%,排除A,故选B。例6、给定四条曲线:,,其中与直线仅有一个交点的曲线是( )A. B. C. D. 解析:分析选择支可知,四条曲线中有且只有一条
14、曲线不符合要求,故可考虑找不符合条件的曲线从而筛选,而在四条曲线中是一个面积最大的椭圆,故可先看,显然直线和曲线是相交的,因为直线上的点在椭圆内,对照选项故选D。4、代入法将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案. 例1函数y=sin(2x)sin2x的最小正周期是( ) (A) (B) (C) 2 (D) 4 解:(代入法)f(x)sin2(x)sin2(x)f(x), 而f(x)sin2(x)sin2(x)f(x).所以应选B; 另解:(直接法)ycos2xsin2xsin2xsin(2x),T,选B.
15、例2函数ysin(2x)的图象的一条对称轴的方程是( ) (A)x (B)x (C)x (D)x 解:(代入法)把选择支逐次代入,当x时,y1,可见x是对称轴,又因为统一前提规定只有一项是符合要求的,故选A. 另解:(直接法) 函数ysin(2x)的图象的对称轴方程为2xk,即x, 当k1时,x,选A. 代入法适应于题设复杂,结论简单的选择题。若能据题意确定代入顺序,则能较大提高解题速度。 例3函数ysin(2x)的图象的一条对称轴的方程是( )(A)x (B)x (C)x (D)x 例4已知函数则不等式的解集为( )ABCD例5、计算机常用的十六进制是逢16进1的计数制,采用数字09和字母A
16、F共16个计数符号,这些符号与十进制的数的对应关系如下表:十六进制0123456789ABCDEF十进制0123456789101112131415例如:用十六进制表示E+D=1B,则AB=()A.6EB.72C.5FD.BO解析:采用代入检验法,AB用十进制数表示为111=110,而6E用十进制数表示为61614=110;72用十进制数表示为7162=1145F用十进制数表示为51615=105;B0用十进制数表示为11160=176,故选A。例6、方程的解( )A.(0,1)B.(1,2)C.(2,3)D.(3,+)解析:若,则,则;若,则,则;若,则,则;若,则,故选C。5、图解法据题设
17、条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法. 例1在内,使成立的的取值范围是( ) (A) (B)(C) (D) 解:(图解法)在同一直角坐标系中分别作出ysinx与ycosx的图象,便可观察选C. 另解:(直接法)由得sin(x)0,即2 kx2k,取k0即知选C. 例2在圆xy4上与直线4x3y12=0距离最小的点的坐标是( ) (A)(,) (B)(,) (C)(,) (D)(,) 解:(图解法)在同一直角坐标系中作出圆xy4和直线4x3y12=0后,由图可知距离最小的点在第一象限内,所以选A. 直接法:先求得过原点的垂线,再与已知直线相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选择题 解题 方法 总结 17
限制150内