你能证明它们吗(三)教学设计.doc
《你能证明它们吗(三)教学设计.doc》由会员分享,可在线阅读,更多相关《你能证明它们吗(三)教学设计.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 证明(二)1. 你能证明它们吗(三)一、学生知识状况分析在前两节课,学生已经经历了独立探索发现定理的过程,并能基本规范地证明相关命题,这些都为本节课进一步探索发现相关定理提供了较好的知识基础和活动经验基础。二、教学任务分析本节课,学生将探究等边三角形判定定理和含30角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索。但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无
2、意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会。为此,确定本节课的教学目标:1知识目标:理解等边三角形的判别条件及其证明,理解含有30角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。2能力目标:经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维经历实际操作,探索含有30角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力。3情感与价值观要求积极参与数学学习活动,对数学有好奇心和求知欲在数学活动中获得成功的体验,锻炼
3、克服困难的意志,建立自信心.教学重点等边三角形判定定理的发现与证明.含30角的直角三角形的性质定理的发现与证明.4教学难点含30角的直角三角形性质定理的探索与证明.引导学生全面、周到地思考问题.三、教学过程分析学具准备:两个带30度角的三角板。本节课设计了六个教学环节:第二环节:自主探索;第三环节:实际操作 提出问题;第四环节:变式训练 巩固新知;第五环节:畅谈收获 课时小结;第六环节:布置作业。第一环节:提问问题,引入新课活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课
4、。活动目的:开门见山,引入新课,同时回顾,也为后续探索提供了铺垫。活动效果:在老师的引导下,一般学生都能得出等边三角形的性质;对于等边三角形的判别,学生可能会出现多种情况,如直接从等边三角形性质出发,当然也可能有学生考虑分步进行,现确定它是等腰三角形,再增补条件,确定它是等边三角形。这是教师可以适时提出问题:如果已知一个三角形是等边三角形的基础上,如何确定它是等边三角形呢?下面是实际教学中的部分师生活动实况:生等腰三角形已经有两边分别相等,所以我认为只要腰和底相等,等腰三角形就成了等边三角形生等边三角形的三个内角都相等,且分别都等于60我认为等腰三角形的三个内角都等于60,等腰三角形就是等边三
5、角形了(此时,部分同学同意此生的看法,部分同学不同意此生的看法,引起激烈地争论教师可让同学代表充分发表自己的看法)生我不同意这位同学的看法因为任何一个三角形满足这个条件都是等边三角形根据等角对等边,三个内角都是60,所以它们所对的边一定相等但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费!师给三个角都是60,这个条件的确有点浪费,那么给什么条件不浪费呢?下面同学们可在小组内交流自己的看法(2)你认为有一个角等于60的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流(教师应给学生自主探索、思考的时间)第二环节:自主探索活动内容:学生
6、自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:性质判定的条件等腰三角形(含等边三角形)等边对等角等角对等边“三线合一”即等腰三角形顶角平分线,底边上的中线、高互相重合有一角是60等边三角形三个角都相等,且每个角都是60三个角都相等的三角形是等边三角形活动目的:经历定理的探究过程,即明确有关定理,同时提高学生的自主探究能力。活动注意事项与效果:由于有了第1环节的铺垫,学生多能探究出:顶角是60的等腰三角形是等边三角形;底角是60的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 证明 它们 教学 设计
限制150内