《二十二章二次函数二次函数的图象和质.ppt》由会员分享,可在线阅读,更多相关《二十二章二次函数二次函数的图象和质.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二十二章二次函数二次函数的图象和质 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望温故知新温故知新1.1.研究一次函数的顺序:研究一次函数的顺序:概念概念 图象和性质图象和性质 应用性质应用性质 从特殊到一般从特殊到一般 2.2.如何如何研究二次函数的性质呢?研究二次函数的性质呢?或或新知探究新知探究(1)(1)x的取的取值值范范围围:全体实数;全体实数;(2)(2)y的取的取值值范范围围:(3)(3)x取一取一对对相反数相反数时时,函数,函数值值相等相等(对对称
2、性);称性);(4)(4)x=0时时,y有最小有最小值值,y的的最小最小值为值为0 0;(5)(5)当当x0时时,y随着随着x的增大而增大的增大而增大;当当x0时时,y 随着随着x的增大而减小;的增大而减小;(6)(6)图图象位于第一、二象限和原点;象位于第一、二象限和原点;(7)(7)图图象第一象限部分是直象第一象限部分是直线还线还是曲是曲线线?从从解析式解析式研究图象和性质研究图象和性质新知探究新知探究 取取特殊点特殊点 时时 ,y的增长速度先的增长速度先慢慢后后快快.第一象限部分第一象限部分xOyx示意图猜想示意图猜想1.1.图象关于图象关于y轴对称;轴对称;2.2.图象有最低点(图象有
3、最低点(0,00,0););3.3.在在y轴左侧,轴左侧,y随着随着x的增大而减小;的增大而减小;在在y轴右侧,轴右侧,y随着随着x的增大而增大的增大而增大.的性质的性质新知探究新知探究描点法画描点法画 y=x2 的的图图象象(1 1)列表:在)列表:在 x 的取值范围内列出函数对应值表:的取值范围内列出函数对应值表:x-2-10 01 12 2 4 41 10 01 14 4 y从从表格表格分析图象和性质分析图象和性质图象关于图象关于y轴对称;轴对称;图象有最低点(图象有最低点(0,00,0););在在y轴左侧,轴左侧,y随着随着x的增大而减小;的增大而减小;在在y轴右侧,轴右侧,y随着随着
4、x的增大而增大的增大而增大.新知探究新知探究(2 2)描点描点xo-4-3-2-11234108642-21y=x2(3 3)用光滑曲线顺次连接各点,得到函数)用光滑曲线顺次连接各点,得到函数y=x2 2 的图象的图象.你能从你能从图象图象分析性质吗?分析性质吗?新知探究新知探究 抛物线:二次函数的图象都是抛物线二次函数的图象都是抛物线 一般地,二次函数一般地,二次函数的图象叫做的图象叫做抛物线抛物线二次函数二次函数y=x2 2 的图象形状类似于投篮或掷铅球时球的图象形状类似于投篮或掷铅球时球在空中所经过的路线,只是这条曲线开口向上,这条在空中所经过的路线,只是这条曲线开口向上,这条曲线叫曲线
5、叫抛物线抛物线y=x2 2.新知探究新知探究对称轴、顶点、最低点、最高点对称轴、顶点、最低点、最高点对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的抛物线的顶点顶点.这条抛物线关于这条抛物线关于y轴对称,轴对称,y轴轴 是它的是它的对称轴对称轴.新知探究新知探究抛物线抛物线 y=x2 2在在x轴上方轴上方(除顶点外除顶点外),顶点是它,顶点是它的最低点,开口向上,的最低点,开口向上,并且向上无限伸展并且向上无限伸展;当当x=0=0时时,函数函数 y的值最的值最小,最小值是小,最小值是0.0.在在对对称称轴轴左侧(或左侧(或x 0时时),y随着随着x的增大而增大的增大而增大.合作交流合作
6、交流 在同一坐标系中在同一坐标系中,画出下列函数的图象画出下列函数的图象:并比较它们的相同点与不同点并比较它们的相同点与不同点.归纳性质归纳性质 1.1.开口方向:开口方向:当当a0时时,开口向上;开口向上;当当a0时,函数有最小值,时,函数有最小值,且当且当x0时,时,ymin0;当当a0时,函数有最大值,时,函数有最大值,且当且当x0时,时,ymax0.5.5.增减性:增减性:应用性质应用性质例例1(1)1(1)抛物线抛物线 y=8=8x2 2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,在在 侧侧,y随着随着x的增大而增大;在的增大而增大;在 侧侧,y随着随着x的增大而减小的增大而减小
7、,当当 x=时时,函数函数y的值最的值最 ,最最 值是值是 ,抛物线抛物线y=8=8x2 2在在x轴轴的的 方方(除顶点外除顶点外).).(0,0)y轴轴y轴右轴右y轴左轴左00上上小小小小应用性质应用性质(2)(2)抛物线抛物线 在在x轴的轴的 方方(除顶点外除顶点外),),在对称轴的左侧在对称轴的左侧,y随着随着x的的 ;在对称轴的右侧在对称轴的右侧,y随着随着x的的 ,当当x=0=0时时,函数函数y的值最的值最 ,最最 值是值是 ;当当x 0 0时时,y0时,时,y随随x的增大而增大,求函数关系式的增大而增大,求函数关系式.解:解:(1 1)由题意得,由题意得,解得,解得,(2 2)由题意得,由题意得,解得,解得,巩固练习巩固练习教科书教科书3232页练习,增加一问:页练习,增加一问:分别分别说出函数的增减性说出函数的增减性.反思提升反思提升1.1.从函数解析式、表格、图象研究函数图象和性从函数解析式、表格、图象研究函数图象和性质的几个方面质的几个方面:自变量取值范围,函数值取值范围,对称性,自变量取值范围,函数值取值范围,对称性,最值,增减性等最值,增减性等.2.2.二次函数二次函数y=ax2 2的图象的图象和和性质性质.3.3.数形结合数形结合图象和性质密不可分图象和性质密不可分.由图象想性质、由性质想图象由图象想性质、由性质想图象.
限制150内