【高考】高中数学知识点易错点梳理函数部分 .docx
《【高考】高中数学知识点易错点梳理函数部分 .docx》由会员分享,可在线阅读,更多相关《【高考】高中数学知识点易错点梳理函数部分 .docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学知识点易错点梳理函数C 3.函数图像的对称性(1)一个函数图像自身的对称性性质1:对于函数,若存在常数使得函数定义域内的任意,都有,则函数的图像关于直线对称. 【特例】,当时,的图像关于直线对称. 性质2:对于函数,若存在常数使得函数定义域内的任意,都有-的图像关于点对称. 【特例】:当时,的图像关于点对称.事实上,上述结论是广义奇(偶)函数的性质.性质3:设函数,如果对于定义域内任意的,都有,则的图像关于直线对称.(这实际上是偶函数的一般情形)广义偶函数.性质4:设函数,如果对于定义域内任意的,都有,则的图像关于点对称.(实际上是奇函数的一般情形)广义奇函数.【小结】函数对称性的充要
2、条件函数关系式()对称性函数图像是奇函数函数图像是偶函数或函数图像关于直线对称或函数图像关于点对称(2)两个函数图像之间的对称性1.函数与的图像关于直线对称.2.函数与的图像关于直线对称.3.函数与的图像关于原点对称.4.函数与的图像关于直线对称.特别地,函数与的图像关于直线对称.(2010江苏卷5)设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=_ a = -1C4.几个函数方程的周期(约定)(1)若,或,则的周期;(2)若,或,或 ,或,或,则的周期;【说明】函数满足对定义域内任一实数(其中为常数),都有等式成立.上述结论可以通过反复运用已知条件来证明.C5.对称性与周期性
3、的关系(可与三角函数类比)定理1:若定义在上的函数的图像关于直线和对称,则是周期函数,且是它的一个周期.推论1:若函数满足及,则是以为周期的周期函数.定理2:若定义在上的函数的图像关于点和直线对称,则是周期函数,且是它的一个周期.推论2:若函数满足及,则是以为周期的周期函数.定理3:若定义在上的函数的图像关于点和对称,则是周期函数,且是它的一个周期.推论3:若函数满足及,则是以为周期的周期函数.C6. 1、若函数为偶函数,则函数的图像关于直线对称.2、若函数为奇函数,则函数的图像关于点对称.3、定义在上的函数满足,且方程恰有个实根,则这个实根的和为.C7.关于奇偶性与单调性的关系. 如果奇函数
4、在区间上是递增的,那么函数在区间上也是递增的; 如果偶函数在区间上是递增的,那么函数在区间上是递减的;C11.函数图像变换(主要有平移变换、翻折变换、对称变换和伸缩变换等).1.平移变换(1)函数的图象是把的图象沿轴向左或向右平移个单位得到的(2)函数+的图象是把助图象沿轴向上或向下平移个单位得到的2.翻折变换(1)由得到,就是把的图像在轴下方的部分作关于轴对称的图像,即把轴下方的部分翻到轴上方,而原来轴上方的部分不变.(2)由得到,就是把的图像在轴右边的部分作关于轴对称的图像,即把轴右边的部分翻到轴的左边,而原来轴左边的部分去掉,右边的部分不变.3.伸缩变换:将的横坐标变为原来的倍,纵坐标变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 【高考】高中数学知识点易错点梳理函数部分 高中数学 知识点 易错点 梳理 函数 部分
限制150内