抽样检验和抽样分布.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《抽样检验和抽样分布.pptx》由会员分享,可在线阅读,更多相关《抽样检验和抽样分布.pptx(73页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一节 抽样及抽样中的几个基本概念一、抽样的概念和特点1、抽样:从所研究的对象中随机地取出其中一部分来观察,由此而获得有关总体的信息。 1)遵守随机原则; 2)推断被调查现象的总体特征; 3)计算推断的准确性和可靠性。二、抽样的基本概念二、抽样的基本概念 1、全及总体和样本总体、全及总体和样本总体 全及总体是我们所要研究的对象,而样本总体则是我们所要观察的对象,两者是有区别而又有联系的不同范畴。全及总体又称母体:具有某种共同性质的许多单位的集合体。 样本总体:样本总体:又称子样,简称样本,是从全及总体中随机抽取出来,代表全及总体的那部分单位的集合体。样本总体的单位数称为样本容量,通常用小写英文
2、字母n来表示。 样本代表性问题:样本代表性问题:随着样本容量的增大,样本对总体的代表性越来越高,并且当样本单位数足够多时,样本平均数愈接近总体平均数。. .全及指标和抽样指标全及指标和抽样指标n全及指标:全及指标:根据全及总体各个单位的标志值或标志属性计算的,反映总体某种属性或特征的综合指示称为全及指标。常用的全及指标有总体平均数(或总体成数)、总体标准差(或总体方差 )。 n抽样指标:抽样指标:由样本总体各单位标志值计算出来反映样本特征,用来估计全及指标的综合指标称为统计量(抽样指标)。统计量是样本变量的函数,用来估计总体参数,因此与总体参数相对应,统计量有样本平均数(或抽样成数)、样本标准
3、差(或样本方差 )。 n注意:注意: 对于一个问题全及总体是唯一确定的,所以全及指标也是唯一确定的,全及指标也称为参数,它是待估计的数。而统计量则是随机变量,它的取值随样本的不同而发生变化。 、样本容量和样本个数 n样本容量:样本容量:指一个样本所包含的单位数。通常将样本单位数不少于个的样本称为大样本,不及个的称为小样本。社会经济统计的抽样调查多属于大样本调查。样本个数又称样本可能数目。指从一个总体中可能抽取的样本个数。一个总体有多少样本,则样本统计量就有多少种取值,从而形成该统计量的分布,此分布是抽样推断的基础。 、重复抽样和不重复抽样 有放回抽样:总体中的每个个体单位可以不止一次地被选中的
4、抽样。无放回抽样:总体中的每个个体被选中的次数不多于一次。名称样 本总 体定义从总体中抽出的部分单位数研究对象的全部单位总数特征统 计 量参 数符号样本容量:n 样本平均数:样本比例:样本标准差:s样本方差总体容量:N总体平均数:总体比例:p总体标准差:总体方差:xp25、样本统计量的总体参数符号三、随机抽样和判断抽样按照随机原则抽取样本,在总体中所有单位被抽中的机会是均等的。:根据个人或集体的设想或经验,从总体中有目的地抽取样本。v1 1、非抽样误差:、非抽样误差:在调查登记过程中发生的误差和由于主观因素破坏了随机原则而产生的系统性偏差。2、抽样误差:、抽样误差:是指由于随机抽样的偶然因素使
5、样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。不包含登记性误差和不遵守随机原则造成的偏差。n影响抽样误差的因素有:影响抽样误差的因素有:总体各单位标志值的差异程度;样本的单位数;抽样的方法;抽样调查的组织形式。第二节 随机抽样设计一、纯随机抽样:一、纯随机抽样:对总体的所有容量不做任何的分类和排队,完全按随机原则逐个抽取样本容量。将总体容量全部加以编号,并编成相应的号签,然后将号签充分混合后逐个抽取,直到抽到预定需要的样本容量为止。总体容量很多时,编制号签的工作量很大,且很难掺和均匀。:用字母顺序或身份证号等任何方便的方法对总体容量编者按号,利用随机数表从
6、1到总体容量N中随机抽取n(样本容量数)个数,遇到那些不在编号里的数字需跳过。先将总体各单位按某一有关标志(或无关标志)排队,然后相等距离或相等间隔抽取样本单位。根据需要抽取的样本单位数(n)和全及总体单位数(N),可以计算出抽取各个样本单位之间的距离和间隔,即:K=N/n,然后按此间隔依次抽取必要的样本单位。K 某企业有职工5000名,现要随机抽取100人进行家庭收入水平调查。按与研究目的无直接关系的姓名笔划对总体进行排列,把总体划分为K=5000/100=50个相等的间隔,在第1至第50人中随机抽取一名,如抽到第10名,后面间隔依次抽取第60,110,160,210,直到4960为止,总共
7、抽取50同名职工组成一个抽样总体。(1)能保证被抽取到的样本单位在全及总体中均匀分布;(2)简化抽样过程。要避免抽样间隔或样本距离和现象本身的节奏性或循环周期相重合。三、类型抽样三、类型抽样将全及总体中的所有单位按某一主要标志分组,然后在各组中采用纯随机抽样或等距抽样方式,抽取一定数目的调查单位构成所需的样本。主要适用于总体情况比较复杂,各类型或层次之间的差异较大,而总体单位又较多的情形,分层使层内各单位之间的差异减小,层间差异扩大。 按照总体单位数在各组之间的比例,分配各组的抽样单位数。即:各类型中抽取的样本单位数ni占该类型所有单位数Ni的比例是相等的,等同于样本单位总数n占总体单位数N的
8、比例,即:NnNnNnNnNnKK332211按前面指定的比例(n/N)从每组的Ni单位中抽取ni个单位即构成一个抽样总体,其样本容量为: n= n1+ n2+ n3+ nk=Kiin1nNNnNNniii(二)类型适宜抽样(二)类型适宜抽样 在抽取样本单位数时,要考虑各类型组包含的单位数不同和标志变动度( )的不同,变动程度( )大的类型组要多抽样本单位数,变动程度( )小的组要少多抽样本数,使得各类型组的变动程度( )在所有类型组变动程度之和 中的比例相等,等同于是 或 。nniNNiiiii 此外,还可将各类型组单位数 和变动程度 结合考虑,使得 在所有类型组之和 中所占比例等于 或 ,
9、即:iiNKiiNi1NiinniNNiKiiiiiiNNnn1从而求得各类型的样本单位数为:iKiiiiiNNnn1/四、整群抽样 在全及总体中以群(或组)为单位,按纯随机方式或等距抽样方式,抽取若干群(或组),然后对所有抽中的各群(或各组)中的全部单位一一进行调查。五、多阶段抽样五、多阶段抽样 将多个抽样程序分成若干阶段,然后逐阶段进行抽样,以完成整个抽样过程。 总体包括的单位很多,而且分布很广,通过一次抽样抽选出样本是很困难的,这时使用多阶段抽样。 例:对我国的农产量进行抽样调查。 先由省抽县,由抽中的县内再抽乡、村,由抽中的乡、村抽地块,最后才由抽中的地块再抽样本单位。从一个给定的总体
10、中抽取(不论是否有放回)容量(或大小)为n的所有可能的样本,对于每一个样本,计算出某个统计量(如样本均值或标准差)的值,不同的样本得到的该统计量的值是不一样的,由此得到这个统计量的分布,称之为抽样分布。n例如:如果特指的统计量是样本均值,则此分布为均值的抽样分布。类似的有标准差、方差、中位数、比例的抽样分布。 对于每个统计量的抽样分布,可计算出它的均值和标准差等,称之为该统计量抽样分布的均值和标准差等。(一)被抽样的总体服从正态分布,样本平均数 的抽样分布具有下列质:1、样本平均数的分布依然是正态分布;2、样本平均数 分布的平均值 等于总体平均数;3、样本平均数 分布的均方差 等于: xxxx
11、x当为有限总体无放回抽样时,其样本均值标准差为:如果总体为无限总体的或抽取是有放回的,其样本均值标准差为:1NNppxNNNx(二)非正态总体样本平均数(二)非正态总体样本平均数 的分布及的分布及性质?性质?1、中心极限定理可以解决上述问题: 一个具有任意函数形式的总体,其样本平均值和方差 有限。在对该总体进行抽样时,随着样本容量n的增大,由这些平均样本算出的平均数 的抽样分布将近似服从平均数为和方差为 的正态分布。x2xn22 2、样本容量究竟该多大才能使抽样分布逼、样本容量究竟该多大才能使抽样分布逼近于正态分布?近于正态分布? 中心极限定理说明了不仅从正态总体抽取样本时,样本平均数这一统计
12、量要服从正态分布,即使是从非正态总体进行抽样,只要是大样本(容量n30),样本平均数也趋向于正态分布。(三)应用举例例1:从某地区统计中得知,该地区郊区平均每一家庭年收入为3160元,标准差为800元。从此郊区抽取50个家庭为一随机样本,平均每年收入为以下数字的平均概率是多少:(1)多于3000元;(2)少于3000元;(3)在3200元到3300元之间。使用模型描述我们的问题使用模型描述我们的问题 题中没有告知总体服从正态分布,但样本容量足够大(n=50),据中心极限定理, 近似服从正态分布。(1) x3160 x14.11350800Nx9207.041.114.11331603000/3
13、000zPnxPxPx同理处理(2)和(3)(2)(3)0973.09207.0141.114.11331603000/3000zPnxPxPx2557. 024. 135. 050/80031603300/50/8003160320033003200zpnxPxPx例2:从海外A地区采购大豆10000包,已知平均每包重量为100公斤,标准差为4公斤,现按不重复抽样从中抽取样本容量n=500包的样本,来测定这批大豆的每包平均重量,要求标出样本平均重量短0.5公斤以上的概率.问题的模型描述问题的模型描述&没有告知总体服从正态分布,但样本容量足够大(n=500),据中心极限定理, 可知 近似服从正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽样 检验 分布
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内