2018年度行测数学运算题及经典题型总结分析大全.doc
《2018年度行测数学运算题及经典题型总结分析大全.doc》由会员分享,可在线阅读,更多相关《2018年度行测数学运算题及经典题型总结分析大全.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.一、容斥原理 容斥原理关键就两个公式:1. 两个集合的容斥关系公式:A+B=AB+AB2. 三个集合的容斥关系公式:A+B+C=ABC+AB+BC+CA-ABC请看例题:【例题 1】某大学某班学生总数是 32人,在第一次考试中有 26人及格,在第二次考试中有 24人及格,若两次考试中,都没及格的有 4人,那么两次考试都及格的人数是( )A.22 B.18 C.28 D.26【解析】设 A=第一次考试中及格的人数(26 人),B=第二次考试中及格的人数(24 人),显然,A+B=26+24=50; AB=32-4=28,则根据 AB=A+B-AB=50-28=22。答案为 A。【例题 2】电视
2、台向 100人调查前一天收看电视的情况,有 62人看过 2频道,34 人看过 8频道,11 人两个频道都看过。问两个频道都没看过的有多少人?【解析】设 A=看过 2频道的人(62),B=看过 8频道的人(34),显然,A+B=62+34=96;AB=两个频道都看过的人(11),则根据公式 AB= A+B-AB=96-11=85,所以,两个频道都没看过的人数为 100-85=15人。二、作对或做错题问题 【例题】某次考试由 30到判断题,每作对一道题得 4分,做错一题倒扣 2分,小周共得96分,问他做错了多少道题?A.12 B.4 C.2 D.5【解析】方法一假设某人在做题时前面 24道题都做对
3、了,这时他应该得到 96分,后面还有 6道题,如果让这最后 6道题的得分为 0,即可满足题意.这 6道题的得分怎么才能为 0分呢?根据规则,只要作对2道题,做错 4道题即可,据此我们可知做错的题为 4道,作对的题为 26道.方法二作对一道可得 4分,如果每作对反而扣 2分,这一正一负差距就变成了 6分.30 道题全做对可得 120分,而现在只得到 96分,意味着差距为 24分,用 246=4即可得到做错的题,所以可知选择 B.三、植树问题 核心要点提示:总路线长间距(棵距)长棵数。只要知道三个要素中的任意两个要素,就可以求出第三个。【例题 1】李大爷在马路边散步,路边均匀的栽着一行树,李大爷从
4、第一棵数走到底 15棵树共用了 7分钟,李大爷又向前走了几棵树后就往回走,当他回到第 5棵树是共用了 30分钟。李大爷步行到第几棵数时就开始往回走?A.第 32棵 B.第 32棵 C.第 32棵 D.第 32棵解析:李大爷从第一棵数走到第 15棵树共用了 7分钟,也即走 14个棵距用了 7分钟,所以走没个棵距用 0.5分钟。当他回到第 5棵树时,共用了 30分钟,计共走了 300.5=60个棵距,所以答案为 B。第一棵到第 33棵共 32个棵距,第 33可回到第 5棵共 28个棵距,32+28=60个棵距。【例题 2】为了把 2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某
5、单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多 6000米,若每隔 4米栽一棵,则少 2754棵;若每隔 5米栽一棵,则多 396棵,则共有树苗:( )A.8500 棵 B.12500 棵 C.12596 棵 D.13000 棵解析:设两条路共有树苗棵,根据栽树原理,路的总长度是不变的,所以可根据路程相等列出方程:(+2754-4)4=(-396-4)5(因为 2条路共栽 4排,所以要减 4)解得=13000,即选择 D。四、和差倍问题 核心要点提示:和、差、倍问题是已知大小两个数的和或差与它们的倍数关系,求大小两个数的值。(
6、和+差)2=较大数;(和差)2=较小数;较大数差=较小数。【例题】甲班和乙班共有图书 160本,甲班的图书是乙班的 3倍,甲班和乙班各有图书多少本?解析:设乙班的图书本数为 1份,则甲班和乙班图书本书的合相当于乙班图书本数的 4倍。乙班 160(3+1)=40(本),甲班 403=120(本)。.五浓度问题【例 1】(2008 年北京市应届第 14题)甲杯中有浓度为 17%的溶液 400克,乙杯中有浓度为 23%的溶液 600克。现在从甲、乙两杯中取出相同总量的溶液,把从甲杯中取出的倒入乙杯中,把从乙杯中取出的倒入甲杯中,使甲、乙两杯溶液的浓度相同。问现在两倍溶液的浓度是多少( )A.20%
7、B.20.6% C.21.2% D.21.4%【答案】B。【解析】这道题要解决两个问题:(1)浓度问题的计算方法浓度问题在国考、京考当中出现次数很少,但是在浙江省的考试中,每年都会遇到浓度问题。这类问题的计算需要掌握的最基本公式是(2)本题的陷阱条件“现在从甲、乙两杯中取出相同总量的溶液,把从甲杯中取出的倒入乙杯中,把从乙杯中取出的倒入甲杯中,使甲、乙两倍溶液的浓度相同。”这句话描述了一个非常复杂的过程,令很多人望而却步。然而,只要抓住了整个过程最为核心的结果“甲、乙两杯溶液的浓度相同”这个条件,问题就变得很简单了。因为两杯溶液最终浓度相同,因此整个过程可以等效为将甲、乙两杯溶液混合均匀之后,
8、再分开成为 400克的一杯和 600克的一杯。因此这道题就简单的变成了“甲、乙两杯溶液混合之后的浓度是多少”这个问题了。根据浓度计算公式可得,所求浓度为:如果本题采用题设条件所述的过程来进行计算,将相当繁琐。.六行程问题【例 1】(2006 年北京市社招第 21题)2 某单位围墙外面的公路围成了边长为 300米的正方形,甲乙两人分别从两个对角沿逆时针同时出发,如果甲每分钟走 90米,乙每分钟走 70米,那么经过( )甲才能看到乙A.16 分 40秒 B.16 分 C.15 分 D.14 分 40秒【答案】A。【解析】这道题是一道较难的行程问题,其难点在于“甲看到乙”这个条件。有一种错误的理解就
9、是“甲看到乙”则是甲与乙在同一边上的时候甲就能看到乙,也就是甲、乙之间的距离小于 300米时候甲就能看到乙了,其实不然。考虑一种特殊情况,就是甲、乙都来到了这个正方形的某个角旁边,但是不在同一条边上,这个时候虽然甲、乙之间距离很短,但是这时候甲还是不能看到乙。由此看出这道题的难度甲看到乙的时候两人之间的距离是无法确定的。有两种方法来“避开”这个难点解法一:借助一张图来求解虽然甲、乙两人沿正方形路线行走,但是行进过程完全可以等效的视为两人沿着直线行走,甲、乙的初始状态如图所示。图中的每一个“格档”长为 300米,如此可以将题目化为这样的问题“经过多长时间,甲、乙能走入同一格档?”观察题目选项,发
10、现有 15分钟、16 分钟两个整数时间,比较方便计算。因此代入 15分钟值试探一下经过 15分钟甲、乙的位置关系。经过 15分钟之后,甲、乙分别前进了90151350 米(4300150)米70151050 米(3300150)米也就是说,甲向前行进了 4个半格档,乙向前行进了 3个半格档,此时两人所在的地点如图所示。.甲、乙两人恰好分别在两个相邻的格档的中点处。这时甲、乙两人相距 300米,但是很明显甲还看不到乙,正如解析开始处所说,如果单纯的认为甲、乙距离差为 300米时,甲就能看到乙的话就会出错。考虑由于甲行走的比乙快,因此当甲再行走 150米,来到拐弯处的时候,乙行走的路程还不到 15
11、0米。此时甲只要拐过弯就能看到乙。因此再过 150/901 分 40秒之后,甲恰好拐过弯看到乙。所以甲从出发到看到乙,总共需要 16分 40秒,甲就能看到乙。这种解法不是常规解法,数学基础较为薄弱的考生可能很难想到。解法二:考虑实际情况由于甲追乙,而且甲的速度比乙快,因此实际情况下,甲能够看到乙恰好是当甲经过了正方形的一个顶点之后就能看到乙了。也就是说甲从一个顶点出发,在到某个顶点时,甲就能看到乙了。题目要求的是甲运动的时间,根据上面的分析可知,经过这段时间之后,甲正好走了整数个正方形的边长,转化成数学运算式就是90t300n其中,t 是甲运动的时间,n 是一个整数。带入题目四个选项,经过检验
12、可知,只有 A选项16分 40秒过后,甲运动的距离为90(166040)/6015003005符合“甲正好走了整数个正方形的边长”这个要求,它是正确答案。.七抽屉问题三个例子: (1)3 个苹果放到 2个抽屉里,那么一定有 1个抽屉里至少有 2个苹果。 (2)5 块手帕分给 4个小朋友,那么一定有 1个小朋友至少拿了 2块手帕。 (3)6 只鸽子飞进 5个鸽笼,那么一定有 1个鸽笼至少飞进 2只鸽子。 我们用列表法来证明例题(1): 放 法 抽 屉 种 种 种 种 第 1 个抽屉 3个 2个 1个 0个 第 2 个抽屉 0个 1个 2个 3个 从上表可以看出,将 3个苹果放在 2个抽屉里,共有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年度 行测数 学运 算题 经典 题型 总结 分析 大全
限制150内