高一平面解析几何初步复习讲义.doc
《高一平面解析几何初步复习讲义.doc》由会员分享,可在线阅读,更多相关《高一平面解析几何初步复习讲义.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1课时 直线的方程基础过关1倾斜角:对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角叫做直线的倾斜角当直线和x轴平行或重合时,规定直线的倾斜角为0倾斜角的范围为_斜率:当直线的倾斜角90时,该直线的斜率即ktan;当直线的倾斜角等于90时,直线的斜率不存在2过两点P1(x1,y1),P2(x2,y2)(x1x2)的直线的斜率公式 若x1x2,则直线的斜率不存在,此时直线的倾斜角为903直线方程的五种形式名称方程适用范围斜截式点斜式两点式截距式一般式典型例题例1. 已知直线(2m2m3)x(m2m)y4m1 当m 时,直线的倾斜角为45当m 时,直线在x轴上
2、的截距为1 当m 时,直线在y轴上的截距为 当m 时,直线与x轴平行当m 时,直线过原点变式训练1.(1)直线3yx2=0的倾斜角是 ( )A30 B60 C120 D150(2)设直线的斜率k=2,P1(3,5),P2(x2,7),P(1,y3)是直线上的三点,则x2,y3依次是 ( )A3,4 B2,3 C4,3 D4,3(3)直线l1与l2关于x轴对称,l1的斜率是,则l2的斜率是 ( )A B C D(4)直线l经过两点(1,2),(3,4),则该直线的方程是 例2. 已知三点A(1,-1),B(3,3),C(4,5).求证:A、B、C三点在同一条直线上.变式训练2. 设a,b,c是互
3、不相等的三个实数,如果A(a,a3)、B(b,b3)、C(c,c3)在同一直线上,求证:a+b+c=0.例3. 已知实数x,y满足y=x2-2x+2 (-1x1).试求:的最大值与最小值.变式训练3. 若实数x,y满足等式(x-2)2+y2=3,那么的最大值为( )A. B.C. D.例4. 已知定点P(6, 4)与直线l1:y4x,过点P的直线l与l1交于第一象限的Q点,与x轴正半轴交于点M求使OQM面积最小的直线l的方程变式训练4.直线l过点M(2,1),且分别交x轴y轴的正半轴于点A、B,O为坐标原点(1)当AOB的面积最小时,求直线l的方程;(2)当取最小值时,求直线l的方程第2课时
4、直线与直线的位置关系基础过关(一)平面内两条直线的位置关系有三种_1当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定直线条件关系l1:yk1xb1l2:yk2xb2l1:A1xB1yC10l2:A2xB2yC20平行重合相交(垂直)2当直线平行于坐标轴时,可结合图形判定其位置关系(二)点到直线的距离、直线与直线的距离1P(x0,y0)到直线AxByC0 的距离为_2直线l1l2,且其方程分别为:l1:AxByC10 l2:AxByC20,则l1与l2的距离为 (三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1直线l1到l2的角满足 2直线l1与l2所成的角(简称夹角
5、)满足 (四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数(五)五种常用的直线系方程. 过两直线l1和l2交点的直线系方程为A1xB1yC1(A2xB2yC2)0(不含l2). 与直线ykxb平行的直线系方程为ykxm (mb). 过定点(x0, y0)的直线系方程为yy0k(xx0)及xx0. 与AxByC0平行的直线系方程设为AxBym0 (mC). 与AxByC0垂直的直线系方程设为BxAyC10 (AB0).典型例题例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1l2时,求
6、a的值.变式训练1.若直线l1:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分别相交?平行?垂直?重合?例2. 直线y2x是ABC中C的平分线所在的直线,若A、B坐标分别为A(4,2)、B(3,1),求点C的坐标并判断ABC的形状例3. 设点A(3,5)和B(2,15),在直线l:3x4y40上找一点p,使为最小,并求出这个最小值变式训练3:已知过点A(1,1)且斜率为m(m0)的直线l与x、y轴分别交于P、Q两点,过P、Q作直线2xy0的垂线,垂足分别为R、S,求四边形PRSQ的面积的最小值第3课时 圆的方程基础过关1 圆心为C(a、b),半径为r的圆
7、的标准方程为_2圆的一般方程x2y2DxEyF0(其中D2E24F0),圆心为 ,半径r 3二元二次方程Ax2BxyCy2DxEyF0表示圆的方程的充要条件是 4圆C:(xa)2(yb)2r2的参数方程为_x2y2r2的参数方程为_5过两圆的公共点的圆系方程:设C1:x2y2D1xE1yF10,C2:x2y2D2xE2yF20,则经过两圆公共点的圆系方程为 典型例题例1. 根据下列条件,求圆的方程(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x10y90上(2) 经过P(2,4),Q(3,1)两点,并且在x轴上截得的弦长为6变式训练1:求过点A(2,3),B(2,5),且圆心在直
8、线x2y3=0上的圆的方程例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OPOQ(O为坐标原点),求该圆的圆心坐标及半径.变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (mR).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(例3. 知点P(x,y)是圆(x+2)2+y2=1上任意一点.(1)求P点到直线3x+4y+12=0的距离的最大值和最小值;(2)求x-2y的最大值和最小值;(3)求的最大值和最小值.变式训练3:已知实数x、y满足方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 解析几何 初步 复习 讲义
限制150内