高中数学典型例题分析.doc
《高中数学典型例题分析.doc》由会员分享,可在线阅读,更多相关《高中数学典型例题分析.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学典型例题分析第八章 平面向量与空间向量 8.1平面向量及其运算一、知识导学1.模(长度):向量的大小,记作|。长度为的向量称为零向量,长度等于个单位长度的向量,叫做单位向量。2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。3.相等向量:长度相等且方向相同的向量。4.相反向量:我们把与向量长度相等,方向相反的向量叫做的相反向量。记作-。5.向量的加法:求两个向量和的运算。已知,。在平面内任取一点,作=,=,则向量叫做与的和。记作+。6. 向量的减法:求两个向量差的运算。已知,。在平面内任取一点O,作=,=,则向量叫做与的差。记作-。7.实数与向量的积:(1)定义: 实
2、数与向量的积是一个向量,记作,并规定: 的长度|=|; 当0时,的方向与的方向相同; 当0时,的方向与的方向相反; 当0时,= (2)实数与向量的积的运算律:设、为实数,则 ()=() (+) =+ (+)=+8.向量共线的充分条件:向量与非零向量共线的充要条件是有且只有一个实数,使得。另外,设=(x1 ,y1), = (x2,y2),则/x1y2x2y1=09.平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2使12 ,其中不共线向量、叫做表示这一平面内所有向量的一组基底。10.定比分点设P1,P2是直线l上的两点,点P是不同于P1,P
3、2的任意一点则存在一个实数,使=,叫做分有向线段所成的比。若点P1、P、P2的坐标分别为(x1,y1),(x,y),(x2,y2),则有 特别当=1,即当点P是线段P1P2的中点时,有11.平面向量的数量积(1)定义:已知两个非零向量和,它们的夹角为,则数量|cos叫做与的数量积(或内积),记作,即|cos规定:零向量与任一向量的数量积是0。(2)几何意义:数量积等于的长度|与在的方向上的投影|cos的乘积。(3)性质:设,都是非零向量,是与方向相同的单位向量,是与的夹角,则|cos,0 当与同向时,| 当与反向时,| 特别地,|2或| cos |(4)运算律: (交换律) ()()() ()
4、(5)平面向量垂直的坐标表示的充要条件:设=(x1 ,y1), = (x2,y2),则=|cos90=0x1x2+y1y2=012.平移公式:设P(x,y)是图形F上的任意一点,它在平移后图形F/上对应点为P/(x/,y/),且设的坐标为(h,k),则由,得:(x/,y/)(x,y)+(h,k)二、疑难知识导析1向量的概念的理解,尤其是特殊向量“零向量”向量是既有大小,又有方向的量向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量;2在运用三角形
5、法则和平行四边形法则求向量的加减法时要注意起点和终点;3对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆;4定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的;5平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。三、经典例题导讲例1 和= (3,4)平行的单位向量是_;错解:因为的模等于5,所以与平行的单位向量就是,即 (,)错因:在求解平行向量时没有考虑到方向相反的情况。正解:因为的模等于5,所以与平行的单位向量是,即(,)或(,)点评:平行的情况有
6、方向相同和方向相反两种。读者可以自己再求解“和= (3,4)垂直的单位向量”,结果也应该是两个。例2已知A(2,1),B(3,2),C(-1,4),若A、B、C是平行四边形的三个顶点,求第四个顶点D的坐标。错解:设D的坐标为(x,y),则有x-2=-1-3,y-1=4-2 ,即x=-2,y=3。故所求D的坐标为(-2,3)。错因:思维定势。习惯上,我们认为平行四边形的四个顶点是按照ABCD的顺序。其实,在这个题目中,根本就没有指出四边形ABCD。因此,还需要分类讨论。正解:设D的坐标为(x,y)当四边形为平行四边形ABCD时,有x-2=-1-3,y-1= 4-2 ,即x= -2,y= 3。解得
7、D的坐标为(-2,3);当四边形为平行四边形ADBC时,有x-2=3-(-1),y-1= 2-4 ,即x= 6,y= -1。解得D的坐标为(6,-1);当四边形为平行四边形ABDC时,有x-3=-1-2,y-2= 4-1 ,即x= 0,y= 5。解得D的坐标为(0,5)。故第四个顶点D的坐标为(-2,3)或(6,-1)或(0,5)。例3已知P1(3,2),P2(8,3),若点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。错解:由|P1P|=2|PP2|得,点P 分P1P2所成的比为2,代入定比分点坐标公式得P()错因:对于|P1P|=2|PP2|这个等式,它所包含的不仅是点
8、P为 P1,P2 的内分点这一种情况,还有点P是 P1,P2的外分点。故须分情况讨论。正解:当点P为 P1,P2 的内分点时,P 分P1P2所成的比为2,此时解得P(); 当点P为 P1,P2 的外分点时,P 分P1P2所成的比为-2,此时解得P(13,4)。 则所求点P的坐标为()或(13,4)。点评:在运用定比分点坐标公式时,要审清题意,注意内外分点的情况。也就是分类讨论的数学思想。例4 设向量 ,则“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件分析:根据向量的坐标运算和充要条件的意义进行演算即可解:若,则,代入坐标得:,即且 消去,得;反之,
9、若,则且,即 则, 故“”是“ ”的充要条件答案:C点评:本题意在巩固向量平行的坐标表示例5已知=(1,-1),=(-1,3),=(3,5),求实数x、y,使=x +y 分析:根据向量坐标运算和待定系数法,用方程思想求解即可解:由题意有 x +y =x(1,-1)+y(-1,3)=(x-y,-x+3y) 又 =(3,5) x-y=3且-x+3y=5 解之得 x=7 且y=4点评:在向量的坐标运算中经常要用到解方程的方法例6已知A(-1,2),B(2,8),= ,= -,求点C、D和向量的坐标分析:待定系数法设定点C、D的坐标,再根据向量 , 和 关系进行坐标运算,用方程思想解之解:设C、D的坐
10、标为、,由题意得=(),=(3,6),=(),=(-3,-6) 又= ,= - ()=(3,6), ()=-(-3,-6) 即 ()=(1,2) , ()=(1,2) 且,且 且 ,且 点C、D和向量 的坐标分别为(0,4)、(-2,0)和(-2,-4)小结:本题涉及到方程思想,对学生运算能力要求较高四、典型习题导练 1. ,则有( ) A. B. C. D. 2.(2006年高考浙江卷)设向量满足,则 (A)1 (B)2 (C)4 (D)53. 将函数y= 4x8的图象L按向量平移到L/,L/的函数表达式为y= 4x,则向量= 4. 从点沿向量方向取线段AB,使,则B点坐标为 5. 、是单位
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 典型 例题 分析
限制150内