2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数专项测评试题(含详细解析).docx
《2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数专项测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数专项测评试题(含详细解析).docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC50米,A
2、CB46,则小河宽AB为多少米()A50sin46B50cos46C50tan46D50tan442、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D3、在RtABC中,C =90,sinA=,则cosA的值等于( )ABCD4、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( )A米B米C米D米5、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里6、如图,A、B、C三点在正方形网格线的交点
3、处,若将ABC绕着点A逆时针旋转得到,则的值为( )ABCD7、在RtABC中,C90,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDtanB8、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则A的正切值是()ABC2D9、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对10、如图,在扇形AOB中,AOB90,以点A为圆心,OA的长为半径作交于点C,若OA2,则阴影部分的面积为()A BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、规定: ,据此判
4、断下列等式成立的是:_(写出所有正确的序号)cos(60) ,sin75,2、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,且与交于点,连接,则下列结论:;其中正确的是_(填序号即可)3、计算:2cos60+(1)0_4、如图,在平面直角坐标系xOy中,点B在x轴正半轴上,点D在y轴正半轴上,C经过A,B,D,O四点,OAB120,OB4,则点D的坐标是_5、cos30的相反数是 _三、解答题(5小题,每小题10分,共计50分)1、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60,看雕塑底部C的仰角为45,求雕塑CD的高度(最后结果精确到
5、0.1米,参考数据:)2、在平面直角坐标系xOy中,O的半径为1对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足M
6、N1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围3、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF30cm,CE:CD1:3,DCF45,CDF30,请根据以上信息,解决下列问题(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离 cm
7、4、如图,在中,动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M设与重叠部分的面积为S,点P运动的时间为秒(1)当点Q在AC上时,CQ的长为_(用含t的代数式表示)(2)当点M落在BC上时,求t的值(3)当与的重合部分为三角形时,求S与t之间的函数关系式(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值5、小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明点A处测得热气球底部点C,中部点D的仰角分别为和,已知点O为热气球中心,点C在上,且点在同一平面内,根据以上提供
8、的倍息,求热气球的直径约为多少米?(参考数据:)(结果精确到)-参考答案-一、单选题1、C【分析】根据三角函数的定义求解即可【详解】解:在中,米,故选:C,【点睛】此题考查了解直角三角形的应用,解题的关键是掌握三角函数的定义2、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90得到ACB=90,同弧所对圆周角相等得到APC=ABC=45,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=
9、90CAB = CBA= 45同弧所对圆周角相等APC=ABC=45AD平分PAB BAD = DAPCDA= DAP+ APC = 45+ DAPCAD= CAB+BAD = 45+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90,CAB = 45, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知识点,灵活综合的运用3、A【分析】由三角函数的定义可知sinA=,可设a=4,c=5,由勾股
10、定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键4、A【分析】过铅球C作CB底面AB于B,在RtABC中,AC=5米,根据锐角三角函数sin31=,即可求解【详解】解:过铅球C作CB底面AB于B,如图在RtABC中,AC=5米,则sin31=,BC=sin31AC=5sin31故选择A【点睛】本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键5、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点
11、A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键6、B【分析】利用勾股定理逆定理得出CDB是直角三角形,以及锐角三角函数关系进而得出结论【详解】解:如图,连接BD,由网格利用勾股定理得:是直角三角形,故选:B【点睛】本题考查旋转的性质、等腰三角形的性质、余弦等知识,是重要考点,掌握相关知识是解题关键7、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sinA,cosA,cosB和tanB即可【详
12、解】解:由勾股定理得:,所以,即只有选项B正确,选项A、选项C、选项D都错误故选:B【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键8、D【分析】首先构造以A为锐角的直角三角形,然后利用正切的定义即可求解【详解】解:连接BD,则BD,AD2,则tanA故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键9、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上
13、升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键10、B【分析】连接OC、AC,作CDOA于D,可证AOC为等边三角形,得出OAC60,可求CD=ODtan60=,可求SOAC,求出BOC30,再求出,S扇形OAC,可得阴影部分的面积()【详解】解:连接OC、AC,作CDOA于D,OAOCAC,AOC为等边三角形,OAC60,CDOA,CDO=90,OD=AD=,CD=ODtan60=,SOAC,BOC30,S扇形OAC,则阴影部分的面积(),故选:B【点睛】本题考查扇形面积,等边三角形判定与性质,锐角三角函数,掌握扇形面积,等边三角形判定与性质,锐角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 人教版 九年级 数学 下册 第二 十八 锐角三角 函数 专项 测评 试题 详细 解析
链接地址:https://www.taowenge.com/p-57395792.html
限制150内