2021-2022学年人教版九年级数学下册第二十七章-相似重点解析试题.docx
《2021-2022学年人教版九年级数学下册第二十七章-相似重点解析试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十七章-相似重点解析试题.docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,D是边AB上一点,过点D作交AC于点E若,则的值( )A2:3B4:9C2:5D4:252、如图,把一张矩
2、形纸片ABCD沿着AD和BC边的中点连线EF对折,对折后所得的矩形正好与原来的矩形相似,则原矩形纸片长与宽的比为( )A4:1BCD2:13、如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF交于点H下列结论:CF2AE;DFPBPH;DP2PHPC;PE:BC(23):3正确的有()A1个B2个C3个D4个4、如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是()ABCD5、下列四个命题中正确的是( )A菱形都相似;B等腰三角形都相似;C两边及其中一边上的中线对应成比例的两三角
3、形相似;D两边对应成比例,且有一个角对应相等的两三角形相似6、如图,BC2,则AB的长为( )A6B5C4D37、如图,P是直角ABC斜边AB上任意一点(A,B两点除外),过点P作一条直线,使截得的三角形与ABC相似,这样的直线可以作()A4条B3条C2条D1条8、如图,点是正方形的边边上的黄金分割点,且,表示为边长的正方形面积,表示以为长,为宽的矩形面积,表示正方形除去和剩余的面积,:的值为( )ABCD9、在小孔成像问题中,如图所示,若点O到的距离是,点O到的距离是,则像的长与物体长的比是( )ABCD10、下面两个图形中一定相似的是( )A两个长方形B两个等腰三角形C有一组对应角是的两个
4、直角三角形D两个菱形 第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABCD中,E是AD上一点,连接BE、AC相交于F,则下列结论:;,正确的是 _2、如图,已知四边形内接于,半径,对角线AC、BD交于E点,且,则_3、如图,以点O为位似中心,将OAB放大后得到OCD,若OA3,AC7,则_4、如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _5、如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y轴上一动点,过点A作ACAB交x轴于点C,点
5、M为线段BC的中点,则PM的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,已知O是坐标原点,A,B两点的坐标分别为(2,1),(3,1),(1)以点O为位似中心,将OAB放大为原来的两倍,画出图形;(2)A点的对应点A的坐标是 ;B点的对应点B的坐标是 ;(3)在AB上有一点P(x,y),按(1)的方式得到的对应点P的坐标是 2、在等边三角形ABC中,点D是边AB的中点,过点D作DEBC交AC于点E,点F在BC边上,连接DF,EF(1)如图1,当DF是BDE的平分线时,若AE2,求EF的长;(2)如图2,当DFDE时,设AEa,则EF的长为 (用含a的式子表示)3、已知:
6、如图,ABC为锐角三角形(1)求作菱形AEDF,使得A为菱形的一个内角,点D,E,F分别边BC,AB,AC上(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=AC=10,BC=8求菱形AEDF的面积4、如图,在RtABC中,C90,BC4,A60,四边形DEFG是ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AEx,DGy(1)求y与x之间的函数关系式;(2)当矩形DEFG的面积S取得最大值时,求CDG与BFG的相似比5、(1)基本模型:如图1,与交于点,且,求证:;(2)模型应用:如图2,在中,点为边上一点,连接,点为线段上一点,连接,若,求
7、的值(3)综合应用:在(2)的条件下,若,平分,求的长 -参考答案-一、单选题1、D【解析】【分析】由题意易得,然后根据相似三角形的性质可求解【详解】解:DEBC,;故选D【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键2、B【解析】【分析】根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得【详解】根据条件可知:矩形AEFB矩形ABCD,E为AD中点,原矩形纸片长与宽的比为故选B【点睛】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键3、D【解析】
8、【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】解:BPC是等边三角形,BPPCBC,PBCPCBBPC60,在正方形ABCD中,ABBCCD,AADCBCD90,ABEDCF30,BE2AE,ADBC,FEPPBC,EFPPCB,EPFBPC,FEPEFPEPF60,EFP是等边三角形,BECF,CF2AE,故正确;PCCD,PCD30,PDC75,FDP15,DBA45,PBD15,FDPPBD,DFPBPC60,DFPBPH,故正确;PDHPCD30,DPHDPC,DPHCPD,DP2PHPC,故正确;ABE30,A90,AEABBC,DCF30,DFDCBC,EFA
9、E+DFBCBCBC,FE:BC(23):3,EFPE,PE:BC(23):3,故正确,综上,四个选项都正确,故选:D【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理4、C【解析】【分析】可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题【详解】解:根据勾股定理,AC,BC,所以,夹直角的两边的比为2,观各选项,只有C选项三角形符合,与所给图形的三角形相似故选:C【点睛】此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长
10、是解题的关键5、C【解析】【分析】根据三角形相似和相似多边形的判定解答【详解】解:A、菱形对应边成比例,但对应角不一定相等,所以所有的菱形不一定都相似,本选项说法错误;B、等腰三角形,各内角的值不确定,故无法证明三角形相似,故本选项错误;C、两边及其中一边上的中线对应成比例的两三角形相似,故本选项正确;D、两边对应成比例,必须夹角相等才能判定三角形相似,故本选项错误故选:C【点睛】本题考查了命题与定理的知识,掌握相似多边形的判定定理是解题的关键6、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查
11、了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键7、B【解析】【分析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案【详解】解:如图,过点P可作PEBC或PEAC,APEABC、PBEABC;过点P还可作PEAB,可得:EPAC90,AAAPEACB;满足这样条件的直线的作法共有3种故选:B【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理从是解题的关键8、C【解析】【分析】设正方形ABCD的边长为a,关键黄金分割点的性质得到和,用a表示出、和的面积,再求比例【详解】解:设正方形ABCD的边长为a,点E是AB上的黄金分割点
12、,故选C【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质9、B【解析】【分析】由题意可知与是相似三角形,相似比为1:3,故CD:AB=1:3【详解】由小孔成像的定义与原理可知与高的比为6:18=1:3与相似比为1:3CD:AB=1:3故选:B【点睛】本题考查了相似三角形的性质,用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比10、C【解析】【分析】根据相似图形定义,相似三角形的判定定理逐项判断即可求解【详解】解:A、因为长方形的大小,形状不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 人教版 九年级 数学 下册 第二 十七 相似 重点 解析 试题
限制150内