2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组单元测试练习题.docx
《2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组单元测试练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组单元测试练习题.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第九章不等式与不等式组单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、不等式组的解是xa,则a的取值范围是( )Aa3Ba=3Ca3Da32、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A5B2C4D63、下列不等式组,无解的是( )ABCD4、已知关于的不等式组的整数解共有个,则的取值范围是( )ABCD5、关于x的不等式(m1)xm1可变成形为x1,则( )Am1Bm1Cm1Dm16、某校在一次外出郊游中,
2、把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A24人B23人C22人D不能确定7、若不等式组解集是,则( )ABCD8、如果ab,下列各式中正确的是( )A2021a2021bB2021a2021bCa2021b2021D2021a2021b9、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )ABCD10、不等式组的解集在数轴上应表示为( )ABCD二、填空题(5小题,每小题4分,共计20分)1、全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题答对一题记4分
3、,答错(或不答)一题记2分小明参加本次竞赛得分要超过60分,他至少要答对 _道题2、已知点P(x,y+1)在第二象限,则点Q(x+2,2y+3)在第 _象限3、若m与3的和是正数,则可列出不等式:_4、已知ab,且c0,用“”或“”填空(1)2a_a+b (2)_(3)c-a_c-b (4)-a|c|_-b|c|5、假设ab,请用“”或“”填空(1)a-1_b-1; (2)2a_2b;(3)_; (4)a+1_b+1三、解答题(5小题,每小题10分,共计50分)1、我市某生态果园今年收获了吨李子和吨桃子,要租用甲、乙两种货车共辆,及时运往外地,甲种货车可装李子吨和桃子吨,乙种货车可装李子吨和桃
4、子吨(1)共有几种租车方案?(2)若甲种货车每辆需付运费元,乙种货车每辆需付运费元,请选出最佳方案,此方案运费是多少2、对于平面直角坐标系中任一点(a,b),规定三种变换如下:A(a,b)(a,b)如:A(7,3)(7,3);B(a,b)(b,a)如:B(7,3)(3,7);C(a,b)(a,b)如:C(7,3)(7,3);例如:A(B(2,3)A(3,2)(3,2)规定坐标的部分规则与运算如下:若ab,且cd,则(a,c)(b,d);反之若(a,c)(b,d),则ab,且cd(a,c)+(b,d)(a+b,c+d);(a,c)(b,d)(ab,cd)例如:A(B(2,3)+C(B(2,3)A
5、(3,2)+C(3,2)(3,2)+(3,2)(6,0)请回答下列问题:(1)化简:A(C(5,3) (填写坐标);(2)化简:C(A(3,2)B(C(1,2) (填写坐标);(3)若A(B(2x,kx)C(A(1+y,2)C(B(ky1,1)+A(C(y,x),且k为整数,点P(x,y)在第四象限,求满足条件的k的所有可能取值3、(1)解方程组: (2)解不等式组4、(1)计算:;(2)解不等式5、解不等式(组):(1)1+3(x2)x3;(2)-参考答案-一、单选题1、D【分析】根据不等式组的解集为xa,结合每个不等式的解集,即可得出a的取值范围【详解】解:不等式组的解是xa,故选:D【点
6、睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键2、C【分析】先求出32x3(k2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k1,则1k3,再由整数k和是整数进行求解即可【详解】解:解方程32x3(k2)得x,方程的解为非负整数,0,把整理得:,由不等式组无解,得到k1,1k3,即整数k0,1,2,3,是整数,k1,3,综上,k1,3,则符合条件的整数k的值的和为4故选C【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解3、D【分析】根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 人教版 初中 数学 年级 下册 第九 不等式 单元测试 练习题
限制150内