2021-2022学年人教版八年级数学下册第十七章-勾股定理综合测试练习题(精选).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021-2022学年人教版八年级数学下册第十七章-勾股定理综合测试练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十七章-勾股定理综合测试练习题(精选).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列条件:(1)A90B,A:B:C3:4:5,A2B3C,AB:BC:AC3:4:5,能确定ABC是直角三角
2、形的条件有()A1个B2个C3个D4个2、如图所示,在ABC中,C90,AC2,点D在BC上,ADC2B,AD,则BC的长为()ABC2+D2+3、如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将ABC折叠,点B与点A重合,折痕为DE,则DE的长为( )ABCD54、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米5、如图,数轴上点A所表示的数是()AB+1C+1D16、如图,以数轴的单位长度为边作正方形,以数轴上的原点O为圆心,正方形的对角线的长为半径作弧与数轴交于一点A,则点
3、A表示的数为( )A1BCD27、下列四组数中,是勾股数的是( )A5,12,13B,C1,D7,24,268、以下列长度的三条线段为边,能组成直角三角形的是( )A4,5,6B8,15,17C2,3,4D1,39、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),ACB90,ACBC,从三角板的刻度可知AB20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( )Acm2Bcm2Ccm2Dcm210、如图,有一个长、宽、高分別为2m、3m、1m的长方体,现一只蚂蚁沿长方体表面从A点爬到B点,那么最短的路径是( )A32mB3mC2mD25m第卷(
4、非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABD和ACE是ABC外两个等腰直角三角形,BADCAE90下列说法正确的是:_(填序号)CDBE;DCBE;连结DE,则有DE2BC22BD2EC2;FA平分DFE2、(1)已知甲、乙两人在同一地点出发,甲往东走了4 km,乙往南走了3 km,这时甲、乙两人相距_km(2)如图是某地的长方形大理石广场示意图,如果小王从A角走到C角,至少走_米(3)如图:有一个圆柱,底面圆的直径AB ,高BC12,P为BC的中点,蚂蚁从A点爬到P点的最短距离是_3、如图,ABC中,ABAC5,在BA延长线上取一点D,使AD7,连结CD,点
5、E为AC边上一点,当AEBD时,BCD的面积是BCE的面积的6倍,则AE_,BCD的面积为 _4、如图,圆柱的底面周长为16,BC12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为 _5、如图,ABC中,CACB,ACB90,E为BC边上一动点(不与点B、点C重合),连接AE并延长,在AE延长线上取点D,使CDCA,连接CD,过点C作CFAD交AD于点F,交DB的延长线于点G,若CD3,BG1,则DB_三、解答题(5小题,每小题10分,共计50分)1、如图1,在RtABC中,C90,EAAB于点A,EB交AC于点D,且ADAE(1)求证:BD平分ABC;(2)如图2,
6、过E作EFAC于点F求证:AFCD;若BC6,AB10,则线段DE的长为_2、如图,在44的正方形网格中,每个小正方形的边长均为1(1)请在所给网格中画一个边长分别为,的三角形;(2)此三角形的面积是 3、如图,已知三角形ABC中,B90,将三角形ABC沿着射线BC方向平移得到三角形DEF,其中点A、点B、点C的对应点分别是点D、点E、点F,且CEDE(1)如图,如果AB4,BC2,那么平移的距离等于_;(请直接写出答案) (2)在第(1)题的条件下,将三角形DEF绕着点E旋转一定的角度(0360),使得点F恰好落在线段DE上的点G处,并联结CG、AG请根据题意在图中画出点G与线段CG、AG,
7、那么旋转角等于_;(请直接写出答案)(3)在图中,如果ABa,BCb,那么此时三角形ACG的面积等于_;(用含a、b的代数式表示)(4)在第(3)小题的情况下,如果平移的距离等于8,三角形ABC的面积等于6,那么三角形ACG的面积等于_;(请直接写出答案)如果平移距离等于m,三角形ABC的面积等于n,那么三角形ACG的面积等于_(用含m、n的代数式表示,请直接写出答案)4、如图,在ABC和DEB中,ACBE,C90,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结AE,若BC4,直接写出AE的长5、如图,牧童在A处放牛,其家在B处,A、B到河岸l的距离分别为AC=1km,BD
8、=3km,且CD=3km(1)牧童从A处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短请在图中画出饮水的位置(保留作图痕迹),并说明理由(2)求出(1)中的最短路程-参考答案-一、单选题1、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可【详解】解:A90B,A+B90,C90,ABC是直角三角形;A:B:C3:4:5,设A3x,则B4x,C5x,3x+4x+5x180,解得:x15,C15575,ABC不是直角三角形;A2B3C, ,A(),ABC为钝角三角形;AB:BC:AC3:4:5,设A
9、B3k,则BC4k,AC5k,AB2+BC2AC2,ABC是直角三角形;能确定ABC是直角三角形的条件有共2个,故选:B【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形必须满足较小两边平方的和等于最大边的平方才能做出判断2、B【分析】根据ADC2B,ADCB+BAD判断出DBDA,根据勾股定理求出DC的长,从而求出BC的长【详解】解:ADC2B,ADCB+BAD,BDAB,BDAD,在RtADC中,C90,DC,BCBD+DC故选:B【点睛】本题考查了等角对等边,勾股定理,求得是解题的关键3、B【分析】由翻折
10、易得DB=AD,根据勾股定理即可求得CD长,再在RtBDE中,利用勾股定理即可求解【详解】解析:由折叠可知,AD=BD,DEAB, BE=AB设BD为x,则CD=8-x,C=90,AC=4,BC=8,AC2+BC2=AB2 AB2=42+82=80,AB=,BE=,在RtACD中,AC2+CD2=AD2 ,42+(8-x)2=x2,解得x=5,在RtBDE中,BE2+DE2=BD2,即()2+DE2=52,DE=, 故选:B【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟记翻折前后对应边相等是解题的关键4、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, ,
11、, , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理5、D【分析】先根据勾股定理计算出BC,则BABC,然后计算出AD的长,接着计算出OA的长,即可得到点A所表示的数【详解】解:如图,BD1(1)2,CD1,BC,BABC,AD2,OA1+21,点A表示的数为1故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键6、B【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可【详解】解:由勾股定理得:,O点表示的原点,点A表示的数为,故选B【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴
12、上无理数的作法,需熟练掌握7、A【分析】根据勾股数的定义:有、三个正整数,满足,称为勾股数由此判定即可【详解】解:、,是勾股数,符合题意;、,不是勾股数,不符合题意;、,不是整数,不是勾股数,不符合题意;、,不是勾股数,不符合题意故选:【点睛】本题考查了勾股数,熟练掌握勾股数的定义是解题的关键8、B【分析】根据勾股定理的逆定理:若三角形三边分别为a,b,c,满足,则该三角形是以c为斜边的直角三角形,由此依次计算验证即可【详解】解:A、,则长为4,5,6的线段不能组成直角三角形,不合题意;B、,则长为8,15,17的线段能组成直角三角形,符合题意;C、,则长为2,3,4的线段不能组成直角三角形,
13、不合题意;D、,则长为1,3的线段不能组成直角三角形,不合题意;故选:B【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键9、A【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明DACECB得到CD=BE=2xcm,再利用勾股定理求解即可【详解】解:设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,由题意得:ACB=ADC=BEC=90,ACD+DAC=ACD+BCE=90,DAC=ECB,又AC=CB,DACECB(AAS),CD=BE=2xcm,故选A【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 人教版 八年 级数 下册 第十七 勾股定理 综合测试 练习题 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内