四章节d区过渡元素一配位化合物.ppt
《四章节d区过渡元素一配位化合物.ppt》由会员分享,可在线阅读,更多相关《四章节d区过渡元素一配位化合物.ppt(174页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、四章节d区过渡元素一配位化合物 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望 二配位配合物的中心金属离子大都具有d0和d10的电子结构,这类配合物的典型例子是Cu(NH3)2、AgCl2、Au(CN)2等。所有这些配合物都是直直线线形形的,即配体金属配体键角为180。作为粗略的近似,可以把这种键合描述为配配位位体体的的轨轨道道和和金金属属原原子子的的sp杂杂化化轨轨道道重重叠叠的的结结果果。不过,在在某某种种程程度度上上过渡金属的d轨道也可能包括在成键中,假定这
2、种键位于金属原子的z轴上,则在这时,用于成键的金属的轨道已将不是简单的spz杂化轨道,而是具有pz成分成分,dz2成分和成分和s成分的成分的spd杂化轨道了杂化轨道了。在在d0的的情情况况下下,金属仅以dz2和s形成ds杂化轨道,配体沿z轴与这个杂化轨道形成配配键键,与此同时金属的dxz和dyz原子轨道分别和配体在x和y方向的px、py轨道形成两两条条pd键键。结果是能量降低,加强了配合物的稳定性。4.1 配位化合物的几何构型配位化合物的几何构型 4.1.1 低配位配合物低配位配合物1 二配位配合物 这种配位数的金属配合物是比较少的。2 三配位配合物 已经确认的如 KCu(CN)2,它是一个聚
3、合的阴离子,其中每个Cu(I)原子与两个C原子和一个N原子键合。Cu(Me3PS)3Cl 中的Cu也是三配位的。在所有三配位的情况下,金属原子与三个直接配位的配位原子都是共平面的,有平面三角形的结构。并非化学式为MX3都是三配位的。如,CrCl3为层状结构,是六配位的;而CuCl3是链状的,为四配位,其中含有氯桥键,AuCl3也是四配位的,确切的分子式为Au2Cl6。一般非过渡元素的四配位化合物都是四面体构型。这是因为采取四面体空间排列,配体间能尽量远离,静电排斥作用最小能量最低。但当除了用于成键的四对电子外,还多余两对电子时,也能形成平面正方形构型,此时,两对电子分别位于平面的上下方,如Xe
4、F4就是这样。过渡金属的四配位化合物既有四面体形,也有平面正方形,究竟采用哪种构型需考虑下列两种因素的影响。(1)配体之间的相互静电排斥作用;(2)配位场稳定化能的影响(见后)。3 四配位化合物 四配位是常见的配位,包括 平面正方形和四面体平面正方形和四面体 两种构型。一般地,当4个配体与不含有d8电子构型的过渡金属离子或原子配位时可形成四面体构型配合物。而d8组态的过渡金属离子或原子一般是形成平面正方形配合物,但具有d8组态的金属若因原子太小,或配位体原子太大,以致不可能形成平面正方形时,也可能形成四面体的构型。4 五配位化合物 应当指出,虽然有相当数目的配位数为5的分子已被确证,但呈现这种
5、奇配位数的化合物要比配位数为4和6的化合物要少得多。如PCl5,在气相中是以三角双锥的形式存在,但在固态中则是以四面体的PCl4离子和八面体的PCl6离子存在的。因此,在根据化学式写出空间构型时,要了解实验测定的结果,以免判断失误。五配位有两种基本构型,三角双锥和四方锥,当然还存在变形的三角双锥和变形的四方锥构型,它们分别属于D3h和C4v对称群。D3h C4v 这两种构型易于互相转化,热力学稳定性相近,例如在Ni(CN)53的结晶化合物中,两种构型共存。这是两种构型具有相近能量的有力证明。5 六配位化合物 对于过渡金属,这是最普遍且最重要的配位数。其几何构型通常是相当于6个配位原子占据八面体
6、或变形八面体的角顶。一种非常罕见的六配位配合物是具有三棱柱的几何构型,之所以罕见是因为在三棱柱构型中配位原子间的排斥力比在三方反棱柱构型中要大。如果将一个三角面相对于相对的三角面旋转60,就可将三棱柱变成三方反棱柱的构型。八面体变形的一种最普通的形式是四方形畸变,包括八面体沿一个四重轴压缩或者拉长的两种变体。四方形畸变 变形的另一种型式是三方形畸变,它包括八面体沿三重对称轴的缩短或伸长,形式三方反棱柱体。三方形畸变6 七配位化合物 大多数过渡金属都能形成七配位的化合物,其立体化学比较复杂,已发现七配位化合物有下面几种构型,但最常见的是前三种。可以发现:在中心离子周围的七个配位原子所构成的几何体
7、远比其它配位形式所构成的几何体对称性要差得多。这些低对称性结构要比其它几何体更易发生畸变,在溶液中极易发生分子内重排。含七个相同单齿配体的配合物数量极少,含有两个或两个以上不同配位原子所组成的七配位配合物更趋稳定,结果又加剧了配位多面体的畸变。五角双锥 单帽八面体 单帽三角棱柱体 两种43的形式 (帽在八面体的 (帽在三棱柱的 (正方形三角形帽结构投影)一个三角面上)矩形面上)八配位和八配位以上的配合物都是高配位化合物。一般而言,形成高配位化合物必须具行以下四个条件。中心金属离子体积较大,而配体要小,以便减小空间位阻;中心金属离子的d电子数一般较少,一方面可获得较多的配位场稳定化能,另一方面也
8、能减少d电子与配体电子间的相互排斥作用;中心金属离子的氧化数较高;配体电负性大,变形性小。综合以上条件,高配位的配位物,其 中心离子通常是有d0d2电子构型的第二、三过渡系列的离子及镧系、锕系元素离子,而且它们的氧化态一般大于3;而常见的配体主要是F、O2、CN、NO3、NCS、H2O等。4.1.2 高配位数配合物 八配位的几何构型有五种基本方式:其中最常的是四方反棱柱体和十二面体。四方反棱柱体 十二面体 立方体 双帽三角棱柱体 六角双锥 九配位的理想几何构型是三帽三角棱柱体,即在三角棱柱的三个矩形柱面中心的垂线上,分别加上一个帽子;另外一种构型是单帽四方反棱柱体,帽子在矩形的上面。三帽三角棱
9、柱体 单帽四方反棱柱体 配配位位数数为为14的配合物可能是目前发现的配位数最高的化合物,其几何结构为双帽六角反棱柱体。双帽四方反棱柱体 双帽12面体 配配位位数数为为10的配位多面体是复杂的,通常遇到的有双帽四方反棱柱体和双帽12面体。单帽五角棱柱体 单帽五角反棱柱体 十十一一配配位位的化合物极少,理论上计算表明,配位数为十一的配合物很难具有某个理想的配位多面体。可能为单帽五角棱柱体或单帽五角反棱柱体,常见于大环配位体和体积很小的双齿硝酸根组成的络合物中。配位数配位数为为12的配合物的理想几何结构为二十面体。配位化合物有两种类型的异构现象:化学结构异构 立体异构 化学结构异构是化学式相同,原子
10、排列次序不同的异构体。包括电离异构、键合异构、配位异构、配位体异构、构型异构、溶剂合异构和聚合异构;立体异构是化学式和原子排列次序都相同,仅原子在空间的排列不同的异构体。包括几何异构和光学异构。一般地说,只有惰性配位化合物才表现出异构现象,因为不安定的配位化合物常常会发生分子内重排,最后得到一种最稳定的异构体。4.2 配位化合物的异构现象 立体异构可分为几何异构和光学异构两种1 几何异构 在配合物中,配体可以占据中心原子周围的不同位置。所研究的配体如果处于相邻的位置,我们称之为顺式结构,如果配体处于相对的位置,我们称之为反式结构。由于配体所处顺、反位置不同而造成的异构现象称为顺反异构。很显然,
11、配位数为2的配合物,配体只有相对的位置,没有顺式结构,配位数为3和配位数为4的四面体,所有的配位位置都是相邻的,因而不存在反式异构体,然而在平面四边形和八面体配位化合物中,顺反异构是很常见的。4.2.1 配合物的立体异构平面四边形配合物 MA2B2型平面四边形配合物有顺式和反式两种异构体。最典型的是Pt(NH3)2Cl2,其中顺式结构的溶解度较大,为 0.25 g100g水,偶极矩较大,为橙黄色粉末,有抗癌作用。反式难溶,为0.0366 g100g,亮黄色,为偶极矩为0,无抗癌活性。含有四个不同配体的MABCD配合物有三种异构体,这是因为B、C、D都可以是A的反位基团。其中的角括弧表示相互成反
12、位。不对称双齿配体的平面正方形配合物M(AB)2也有几何异构现象,如式中(AB)代表不对称的双齿配体。记作 M M M八面体配合物 在八面体配合物中,MA6和MA5B显然没有异构体。在MA4B2型八面体配合物也有顺式和反式的两种异构体:MA3B3型配合物也有两种异构体、一种是三个A占据八面体的一个三角面的三个顶点,称为面式;另一种是三个A位于正方平面的三个顶点,称为经式或子午式(八面体的六个顶点都是位于球面上,经式是处于同一经线,子午式意味处于同一子午线之上)。经式(子午式)MA3(BC)D(其中BC为不对称二齿配体)也有面式和经式的区别。在面式的情况下三个A处于一个三角面的三个顶点,在经式中
13、,三个A在一个四方平面的三个顶点之上。MABCDEF型配合物应该有15种几何异构体,有兴趣的同学可以自己画一下。M(AB)3也有面式和经式的两种异构体:M(ABA)2(其中ABA为齿配体)型配合物有三种异构体:分别为面式、对称的经式和不对称的经式。面式 (ABA处于一个三角面的三个顶点)对称经式(ABA处于一个三角面的三个顶点并呈对称分布)不对称经式(ABA处于一个平面四边形的三个顶点但呈不对称分布)2 光学异构 数学上已经严格证明,手性分子的必要和充分条件是不具备任意次的旋转反映轴Sn。旋光异构现象 光学异构又称旋光异构。旋光异构是由于分子中没有对称因素(面和对称中心)而引起的旋光性相反的两
14、种不同的空间排布。当分子中存在有一个不对称的碳原子时,就可能出现两种旋2 光学异构光异构体。旋光异构体能使偏振光左旋或右旋,而它们的空间结构是实物和镜象不能重合,尤如左手和右手的关系,彼此互为对映体。具有旋光性的分子称作手性分子。旋光异构通常与几何异构有密切的关系。一般地反式异构体没有旋光活性,顺式可分离出旋光异构体来。反式Co(en)2(NO2)2,顺式Co(en)2(NO2)2 无旋光对映体 有旋光对映体 M(AA)3(如Co(en)3)和M(AA)2X2型的六配位螯合物有很多能满足上述条件,其不对称中心是金属本身。Co(en)3)M(AA)2X2 2 溶剂合异构 当溶剂分子取代配位基团而
15、进入配离子的内界所产生的溶剂合异构现象。与电离异构极为相似,最熟悉的例子是:Cr(H2O)6Cl3 Cr(H2O)5ClCl2H2O Cr(H2O)4Cl2Cl2H2O 它们各含有6、5、4个配位水分子,这些异构体在物理和化学性质上有显著的差异,如它们的颜色分别为绿、蓝绿、蓝紫。4.2.2 化学结构异构化学结构异构 结构异构是因为配合物分子中原子与原子间成键的顺序不同而造成的,常见的结构异构包括电离异构,键合异构,配位体异构和聚合异构。1 电离异构 名词用于描述在溶液中产生不同离子的异构体,一个经典的例子是,Co(NH3)5BrSO4紫红色和Co(NH3)5SO4Br(红色),它们在溶液中分别
16、能产生SO42和Br。4 配位异构 在阳离子和阴离子都是配离子的化合物中,配体的分布是可以变化的,这种异构现象叫配位异构。如 Co(NH3)6Cr(CN)6和Cr(NH3)6Co(CN)6 Cr(NH3)6Cr(SCN)6和Cr(SCN)2(NH3)4Cr(SCN)4(NH3)2 PtII(NH3)4PtCl6和Pt(NH3)4Cl2PtIICl4 可见,其中的配位体的种类、数目可以进行任意的组合,中心离子可以相同,也可以不同,氧化态可以相同也可以不同。3 键合异构 有些单齿配体可通过不同的配位原子与金属结合,得到不同键合方式的异构体,这种现象称为键合异构。如 Co(NO2)(NH3)52 和
17、 Co(ONO)(NH3)52 前者叫硝基配合物,是通过N进行配位的;后者叫亚硝基配合物,是通过O进行配位的。类似的例子还有SCN和CN,前者可用S或N进行配位,后者可用C和N进行配位。从理论上说,生成键合异构的必要条件是配体的两个不同原子都含有孤电子对。如,:NCS:,它的N和S上都有孤电子对,以致它既可以通过N原子又可以通过S原子同金属相联结。5 聚合异构 聚合异构是配位异构的一个特例。这里指的是既聚合又异构。与通常说的把单体结合为重复单元的较大结构的聚合的意义有一些差别。如Co(NH3)6Co(NO2)6与Co(NO2)(NH3)5Co(NO2)4(NH3)22 和 Co(NO2)2(N
18、H3)43Co(NO2)6是Co(NH3)3(NO2)3的二聚、三聚和四聚异构体,其式量分别为后者的二、三和四倍。6 配位体异构 这是由于配位体本身存在异构体,导致配合单元互为异构。如1,3-二氨基丙烷(H2N-CH2-CH2-CH2-NH2)与1,2-二氨基丙烷(H2N-CH2-CH(NH2)-CH3)是异构的配位体,它们形成的化合物Co(H2N-CH2-CH2-CH2-NH2)Cl2及Co(H2N-CH2-CH(NH2)-CH3)Cl2互为异构体。7 构型异构 一种配合物可以采取两种或两种以上的空间构型时,则会产生构型异构现象。如NiCl2(Ph2PCH2Ph)2有四面体和平面四边形两种构
19、型。常见的构型异构有五配位的三角双锥和四方锥;八配位的十二面体和四方反棱柱体。等等。2 过渡金属离子是形成配合物的很好的中心形成体。这是因为:过渡金属离子的有效核电荷大;电子构型为917型,这种电子构型的极化能力和变形性都较强,因而过渡金属离子可以和配体产生很强的结合力。当过渡金属离子的d轨轨道道未未充充满满时时,易生生成成内内轨轨型型的配合物;如果d电电子子较较多多,还易与配位体生生成成附加的反反馈馈键键,从而增加配合物的稳定性。4.3 过渡元素的配位化学过渡元素的配位化学 过渡元素具有强烈的形成配合物的趋向。这是因为:1 过渡元素有能量相近的属同一个能级组的(n1)d、ns、np共九条价电
20、子轨道。按照价键理论,这些能量相近的轨道可以通过不同形式的杂化,形成成键能力较强的杂化轨道,以接受配体提供的电子对,形成多种形式的配合物。因而有人说,过渡元素化学就是过渡元素化学就是d电子的配位化学电子的配位化学 显然,配合物的配位数就是中心原子在成键时动用的空轨道数。4.3.1 价键理论价键理论(VB理论理论)配合物的价键理论的基本思想是:配合物是通过给予体和接受体的反应而生成的,给予体原子具有孤对电子,它给出孤对电子进入作为配合物中心原子或离子的空轨道,为了接受这些电子对,中心原子的原子轨道首先要进行杂化形成一组新的具有一定方向性和对称性的等价杂化轨道,再与配体的给予体轨道重叠形成配键。如
21、果中心原子还有合适的孤对电子,而配体又有合适的空轨道,这时中心原子上的孤对电子将进入配体空轨道从而形成反馈的配键。其中n为配合物中的成单电子数,为配合物的磁矩。价键理论顺利地解释了配合物的分子构型。显然,分子构型决定于杂化轨道的类型:根据配合物的磁矩可以计算配合物中成单的电子数并由此确定杂化轨道的类型:配 位 数 2 3 4 4 杂化轨道 sp sp2 sp3 dsp2分子构型 直线 三角形 正四面体 正方形配 位 数 5 5 6杂化轨道 sp3d d2sp2,d4s sp3d2,d2sp3分子构型 三角双锥 四方锥 正八面体 例,实验测得Co(CN)63和CoF63均有正八面体的结构且磁矩分
22、别为0和4.9 B.M.d2sp36CNCo(CN)63:在配位后,sp3d26FCoF63:在Co(CN)63中,Co3中心离子以d2sp3杂化轨道成键,配离子没有成单电子,显抗磁性,为内轨型配合物(也叫共价型配合物)。在CoF63中,杂化轨道的类型为sp3d2,配离子有4个单电子,显顺磁性,为外轨型配合物(也叫电价配合物)。Co 3d74s2:Co3 3d6:3 它不能解释化合物的电子光谱跃迁问题。因为没有提到反键轨道;所谓电价或外轨型配合物是中心离子的电子结构不受配体影响,保持其自由离子的结构,给予体电子排布在外层轨道,中心离子和配体借静电引力结合在一起。而共价或内轨配合物是中心离子的内
23、层d 电子重新排布空出部分轨道参与成键,中心离子和配体借较强的共价键结合在一起。现在,在过渡元素配位化学中VB理论已逐步为配位场理论和分子轨道理论所代替。这是因为,价键理论有它不可克服的缺点,例如:1 这一理论认为配合物中所有的3d轨道能量均相同,这是不真实的;2 3d和4d的能量差较大,但人为地一会儿用3d,一会儿又用4d来成键,至少是不恰当的;4 应用这一理论时,有时需要把一个电子激发到较高能级的空轨道,这样就加进了不切实际的大量能量。这里,X是一价阴离子的配位体。在此过程中,自由离子 Cu2要由3d激发一个电子到 4p需要的激发能为1422.6 kJmol1,看不出这么大的能量从何而来。
24、要补赏这个能量,必须使CuX键键能至少要达到356 kJmol1,已知ClCl键键能为243 kJmol1,这表明,形成CuCl键放出的能量比形成ClCl键放出的能量还要大,这可能是不真实的。根据这个结构,可以推测Cu2的配合物应当很容易地失去未配对的4p电子而迅速氧化为Cu3,但事实并非如此。例如,为了说明Cu2配合物的平面四方形构型问题,认为3d电子被激发到4p能级从而发生dsp2杂化。因此,价键理论被配位场理论或分子轨道理论价键理论被配位场理论或分子轨道理论 取代是十分必然的。取代是十分必然的。Cu2dsp24XCuX42 晶晶体体场场理理论论是一种静静电电理理论论,它把配合物中中中心心
25、原原子子与与配配体体之之间间的的相相互互作作用用,看作类类似似于于离离子子晶晶体体中中正正负负离离子子间间的的相相互互作作用用。但配配体体的的加加入入,使使得得中心原子原来五重简并的 d 轨道(见图)失去了简并性。在一定对称性的配体静电场作用下,五重简并的 d 轨道分裂为两组或更多的能级组轨道分裂为两组或更多的能级组。这种分裂将对配合物的性质产生重要影响。4.3.2 晶体场理论晶体场理论 在1929年由Bethe提出,30年代中期为 Van Vleck等所发展,与Puling的价键理论处于同一时代,但当时并未引起重视,到50年代以后又重新兴起并得到进一步发展,广泛用于处理配合物的化学键问题。d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 章节 过渡 元素 一配位 化合物
限制150内