第二讲二阶线性偏微分方程及其分类优秀PPT.ppt
《第二讲二阶线性偏微分方程及其分类优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第二讲二阶线性偏微分方程及其分类优秀PPT.ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三章第三章二阶线性偏微分方程的化简及其二阶线性偏微分方程的化简及其分类分类 祁影霞作祁影霞作二阶线性偏微分方程的一般形式:其中 是自变量 的函数,假如f=0,则方程是线性齐次方程,否则方程是非线性齐次方程。3.1 两个自变量方程的化简两个自变量方程的化简一般形式:其中只是x,y的函数。以下探讨时 是实数。作变量代换如下:(3-1)假定 则在上式代换下方程(3-1)变为 (3-2)其中系数:(3-3)从(3-3)中可以看出,假如取一阶偏微分方程(3-4)的一个特解作为,则 从而A11=0。假如取(3-4)的另外一个特解作为 则A22=0,这样方程(3-2)就可以简化。一阶偏微分方程(3-4)的
2、求解可以转化为常微分方程的求解,将(3-4)改写成:假如将 看作定义隐函数 的方程,则从而有:(3-5)常微分方程(3-5)叫做二阶线性偏微分方程的特征方程。特征方程的一般积分和 叫做特征线。(3-5)的解为:(3-6)若,二阶线性偏微分方程为双曲型方程 若,二阶线性偏微分方程为抛物型方程 若,二阶线性偏微分方程为椭圆型方程 1:双曲型当 时,(3-6)式给出一族实的特征曲线取 则,这时方程变为若再作 则上述方程变为:(3-7)2:抛物型当,这时(3-6)式只有一个解 它只能给出一个实的特征线,。取与 函数无关的 作为另一个新的变量则有(3-8)3:椭圆型当 时,(3-6)式各给出一族复特征线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 讲二阶 线性 微分方程 及其 分类 优秀 PPT
限制150内